Outline of evolution

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The following outline is provided as an overview of and topical guide to evolution:

A diagram showing the relationships betweens various groups of organisms

Evolution – change in heritable traits of biological organisms over generations due to natural selection, mutation, gene flow, and genetic drift. Also known as descent with modification. Over time these evolutionary processes lead to formation of new species (speciation), changes within lineages (anagenesis), and loss of species (extinction). "Evolution" is also another name for evolutionary biology, the subfield of biology concerned with studying evolutionary processes that produced the diversity of life on Earth.

Fundamentals about evolution[edit]


Basic principles[edit]

  • Macroevolution – change above level of species, including:
    • Speciation – evolutionary process by which new biological species arise
    • Despeciation – loss of a unique species due to combining with another previously distinct species
    • Anagenesis – changes in a lineage that result in a new morphospecies distinct in form from an ancestral species ("phyletic transformation")
    • Extinction – end of a lineage such that there are no longer living populations of a species (or other taxon)
  • Microevolution – change within species or populations, due to mutation, selection (natural and artificial), gene flow, and genetic drift
    • Artificial selection – the process by which humans increase particular traits in a lineage or population by choosing which individuals have offspring together (also called Selective breeding)
    • Natural selection – differential survival and reproduction of individuals due to differences in heritable traits (phenotype), a key mechanism of evolution
      • Sexual selection – a mode of natural selection wherein members of one gender choose mates of the other gender to mate with, resulting in distinct gender-based differences
    • Mutation – a permanent change of the genome of an organism (nucleotide sequence), a key mechanism of evolution
    • Gene flow – movement of genes from one population to another (through migration, dispersal, transport of pollen, etc.)
    • Genetic drift – change in frequency of a gene variant (allele) in a population due to random sampling


  • Biogeography – the study of distribution of species and ecosystems in geographic space and through geological time
  • Ecological genetics – the study of genetics in natural populations
  • Evolutionary biology – study of the evolutionary processes that produced the diversity of life on Earth. More specifically, it studies the descent of species, and the origin of new species.
    • Evolutionary developmental biology – the study of developmental processes to determine the ancestral relationships and discover how developmental processes evolved (informally called evo-devo)
  • Evolutionary ecology – the study of ecology with explicit consideration of evolutionary histories of species, or conversely the study of evolution that incorporates an understanding of ecological interactions between the species
  • Evolutionary physiology – the study of changes in functional characteristics over generations as the result of selection
  • Evolutionary taxonomy – branch of biological classification that classifies organisms based on phylogenetic relationship (shared descent), progenitor-descendant relationship (serial descent), and degree of evolutionary change
  • Experimental evolution – study of evolution using controlled experiments to test hypotheses and theories
  • Molecular evolution – study of change in sequence composition of cellular molecules such as DNA, RNA, and proteins across generations
  • Phylogenetics – study of evolutionary history, development, and relationships among groups of organisms
  • Population genetics – study of distribution and change in frequency of alleles within populations
  • Paleontology – study of evolution of life based on the fossil record
  • Systematics – study of diversification of living forms, both past and present, and relationships among living organisms through time


  • Charles Darwin – English naturalist and geologist, best known for his contributions to evolutionary theory
  • By period or event
  • By field

Evolutionary theory and modelling[edit]

See also Basic principles (above)

Population genetics[edit]

Evolutionary phenomena[edit]


Taxonomy, systematics, and phylogeny[edit]


Basic concepts of phylogenetics[edit]

Inference methods[edit]

Current topics[edit]

Group Traits[edit]

Group Types[edit]

Evolution of biodiversity[edit]

  • Biodiversity – variety of different types of life found on the Earth and the variations within species.[1] It is a measure of the variety of organisms present in different ecosystems. This can refer to genetic variation, ecosystem variation, or species variation (number of species)[1] within an area, biome, or planet. Terrestrial biodiversity tends to be greater near the equator,[2] which seems to be the result of the warm climate and high primary productivity.[3] Biodiversity is not distributed evenly on Earth. It is richest in the tropics. Marine biodiversity tends to be highest along coasts in the Western Pacific, where sea surface temperature is highest and in the mid-latitudinal band in all oceans.

Origin and evolutionary history of life[edit]

Evolution of organisms[edit]

Evolution of tetrapods[edit]

Evolution of other animals[edit]

Evolution of plants[edit]

Evolution of other taxa[edit]

Evolution of cells, organs, and systems[edit]

Evolution of molecules and genes[edit]

Evolution of behaviour[edit]

Evolution of other processes[edit]

Applications in other disciplines[edit]

Evolutionary issues[edit]

Controversy about evolution[edit]

Religious and philosophical views of evolution[edit]

Influence of evolutionary theory[edit]

Publications and organizations concerning evolution[edit]




Evolution scholars and researchers[edit]

Prominent evolutionary biologists[edit]

See also[edit]


  1. ^ a b "What is biodiversity?". United Nations Environment Programme, World Conservation Monitoring Centre. 
  2. ^ Gaston, Kevin J. (11 May 2000). "Global patterns in biodiversity". Nature. 405 (6783): 220–227. doi:10.1038/35012228. PMID 10821282. 
  3. ^ Field, Richard; Hawkins, Bradford A.; Cornell, Howard V.; Currie, David J.; Diniz-Filho, J. Alexandre F.; Guégan, Jean-François; Kaufman, Dawn M.; Kerr, Jeremy T.; Mittelbach, Gary G.; Oberdorff, Thierry; O’Brien, Eileen M.; Turner, John R. G. (1 January 2009). "Spatial species-richness gradients across scales: a meta-analysis". Journal of Biogeography. 36 (1): 132–147. doi:10.1111/j.1365-2699.2008.01963.x. 
  4. ^ K. Rohde: Latitudinal gradients in species diversity and their causes. I. A review of the hypotheses explaining the gradients. Biologisches Zentralblatt 97, 393-403, 1978a.
  5. ^ K. Rohde: Latitudinal gradients in species diversity and their causes. II. Marine parasitological evidence for a time hypothesis. Biologisches Zentralblatt 97, 405-418, 1978b.
  6. ^ Appenzeller, T. 1999. "Test tube evolution catches time in a bottle." Science. 284: 2108-2110
  7. ^ Wright, Sewall (1932) The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution. Proceedings of the Sixth International Congress of Genetics 1: 356-366
  8. ^ Wright, Sewall (1988) Surfaces of Selective Value Revisited. The American Naturalist 131(1):115-123
  9. ^ Lee, Carol E. & Gelebiuk, Gregory W. (2008) Evolutionary origins of invasive populations. "Evolutionary Applications" 1: 427-448.

External links[edit]

General information
Experiments concerning the process of biological evolution
Online lectures