From Wikipedia, the free encyclopedia
Oxygen-17, 17O
Namesoxygen-17, 17O, O-17
Protons (Z)8
Neutrons (N)9
Nuclide data
Natural abundance0.0373% SMOW[1]
0.0377421% (atmosphere[2])
Half-life (t1/2)stable
Isotope mass16.9991315 Da
Excess energy−809 keV
Binding energy131763 keV
Isotopes of oxygen
Complete table of nuclides

Oxygen-17 (17O) is a low-abundance, natural, stable isotope of oxygen (0.0373% in seawater; approximately twice as abundant as deuterium).

As the only stable isotope of oxygen possessing a nuclear spin (+5/2) and a favorable characteristic of field-independent relaxation in liquid water, 17O enables NMR studies of oxidative metabolic pathways through compounds containing 17O (i.e. metabolically produced H217O water by oxidative phosphorylation in mitochondria[3]) at high magnetic fields.

Water used as nuclear reactor coolant is subjected to intense neutron flux. Natural water starts out with 373 ppm of 17O; heavy water starts out incidentally enriched to about 550 ppm of oxygen-17. The neutron flux slowly converts 16O in the cooling water to 17O by neutron capture, increasing its concentration. The neutron flux slowly converts 17O (with much greater cross section) in the cooling water to carbon-14, an undesirable product that can escape to the environment:

17O (n,α) → 14C

Some tritium removal facilities make a point of replacing the oxygen of the water with natural oxygen (mostly 16O) to give the added benefit of reducing 14C production.[4][5]


The isotope was first hypothesized and subsequently imaged by Patrick Blackett in Rutherford's lab in 1925:[6]

Of the nature of the integrated nucleus little can be said without further data. It must however have a mass 17, and provided no other nuclear electrons are gained or lost in the process, an atomic number 8. It ought therefore to be an isotope of oxygen. If it is stable it should exist on the earth.

It was a product out of the first man-made transmutation of 14N and 4He2+ conducted by Frederick Soddy and Ernest Rutherford in 1917–1919.[7] Its natural abundance in Earth's atmosphere was later detected in 1929 by Giauque and Johnson in absorption spectra.[8]


  1. ^ Hoefs, Jochen (1997). Stable Isotope Geochemistry. Springer Verlag. ISBN 978-3-540-40227-5.
  2. ^ Blunier, Thomas; Bruce Barnett; Michael L. Bender; Melissa B. Hendricks (2002). "Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements". Global Biogeochemical Cycles. 6. 16 (3): 1029. Bibcode:2002GBioC..16.1029B. doi:10.1029/2001GB001460.
  3. ^ Arai, T.; S. Nakao; K. Mori; K. Ishimori; I. Morishima; T. Miyazawa; B. Fritz-Zieroth (31 May 1990). "Cerebral Oxygen Utilization Analyzed by the Use of Oxygen-17 and its Nuclear Magnetic Resonance". Biochem. Biophys. Res. Commun. 169 (1): 153–158. doi:10.1016/0006-291X(90)91447-Z. PMID 2350339.
  4. ^ http://www.nrc.gov/docs/ML1016/ML101650129.pdf Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents; EPRI; June 10, 2010
  5. ^ A Compact, Low Cost, Tritium Removal Plant for Candu-6 Reactors; S.K. Sood, C. Fong, and K.M. Kalyanam; Ontario Hydro
  6. ^ Blackett, P. M. S. (1925). "The Ejection of Protons from Nitrogen Nuclei, Photographed by the Wilson Method". Proceedings of the Royal Society of London. Series A. 107 (742): 349–360. Bibcode:1925RSPSA.107..349B. doi:10.1098/rspa.1925.0029.
  7. ^ Rutherford, Ernest (1919). "Collision of alpha particles with light atoms IV. An anomalous effect in nitrogen". Philosophical Magazine. 6th series. 37: 581–587. doi:10.1080/14786440608635919.
  8. ^ Giauque, W. F.; Johnston, H. L. (1929). "An Isotope of Oxygen, Mass 17, in the Earth's Atmosphere". J. Am. Chem. Soc. 51 (12): 3528–3534. doi:10.1021/ja01387a004.

Oxygen-17 is an
isotope of oxygen
Decay product of:
nitrogen-17, fluorine-17
Decay chain
of oxygen-17
Decays to: