p-Laplacian

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, the p-Laplacian, or the p-Laplace operator, is a quasilinear elliptic partial differential operator of 2nd order. It is a nonlinear generalization of the Laplace operator, where is allowed to range over . It is written as

Where the is defined as

In the special case when , this operator reduces to the usual Laplacian.[1] In general solutions of equations involving the p-Laplacian do not have second order derivatives in classical sense, thus solutions to these equations have to be understood as weak solutions. For example, we say that a function u belonging to the Sobolev space is a weak solution of

if for every test function we have

where denotes the standard scalar product.

Energy formulation[edit]

The weak solution of the p-Laplace equation with Dirichlet boundary conditions

in a domain is the minimizer of the energy functional

among all functions in the Sobolev space satisfying the boundary conditions in the trace sense.[1] In the particular case and is a ball of radius 1, the weak solution of the problem above can be explicitly computed and is given by

where is a suitable constant depending on the dimension and on only. Observe that for the solution is not twice differentiable in classical sense.

Notes[edit]

  1. ^ a b Evans, pp 356.

Sources[edit]

Further reading[edit]