PELP-1

From Wikipedia, the free encyclopedia
Jump to: navigation, search
proline, glutamic acid and leucine rich protein 1
Identifiers
Symbol PELP1
Entrez 27043
HUGO 30134
OMIM 609455
RefSeq NM_014389
UniProt Q8IZL8
Other data
Locus Chr. 17 p13.2

Proline-, glutamic acid- and leucine-rich protein 1 (PELP1) also known as modulator of non-genomic activity of estrogen receptor (MNAR) and transcription factor HMX3 is a protein that in humans is encoded by the PELP1 gene.[1] is a transcriptional corepressor for nuclear receptors such as glucocorticoid receptors[2] and a coactivator for estrogen receptors.[3]

Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) is transcription coregulator and modulates functions of several hormonal receptors and transcription factors.[4][5] PELP1 plays essential roles in hormonal signaling, cell cycle progression, and ribosomal biogenesis.[6][7] PELP1 expression is upregulated in several cancers; its deregulation contributes to hormonal therapy resistance and metastasis; therefore, PELP1 represents a novel therapeutic target for many cancers.[8][9]

Gene[edit]

PELP1 is located on chromosome 17p13.2 and PELP1 is expressed in a wide variety of tissues; its highest expression levels are found in the brain, testes, ovaries, and uterus.[3][10][11][12] Currently, there are two known isoforms (long 3.8 Kb and short 3.4 Kb) and short isoform is widely expressed in cancer cells.[13]

Structure[edit]

The PELP1 protein encodes a protein of 1130 amino acids, and exhibits both cytoplasmic and nuclear localization depending on the tissue.[3][3] PELP1 lacks known enzymatic activity and functions as a scaffolding protein. It contains 10 NR-interacting boxes (LXXLL motifs)[3] and functions as a coregulator of several nuclear receptors via its LXXLL motifs including ESR1,[3] ESR2,[14] ERR-alpha,[15] PR,[16] GR,[2][17] AR,[18][19] and RXR.[20] PELP1 also functions as a coregulator of several other transcription factors, including AP1, SP1, NFkB,[2] STAT3,[21] and FHL2.[19]

PELP1 has a histone binding domain and interacts with chromatin-modifying complexes, including CBP/p300,[3] histone deacetylase 2,[2] histones,[2][22] SUMO2,[23] lysine-specific demethylase 1 (KDM1),[24] PRMT6,[25] and CARM1.[26] PELP1 also interacts with cell cycle regulators such as pRb.[13] E2F1,[27] and p53.[28]

PELP1 is phosphorylated by hormonal and growth factor signals.[29][30] PELP1 phosphorylation status is also influenced by cell cycle progression, and it is a substrate of CDKs.[31] Further, PELP1 is phosphorylated by DNA damage induced kinases (ATM, ATR, DNA-PKcs).[28]

Function[edit]

PELP1 functions as a coactivator of several NRs and regulates genes involved in proliferation and cancer progression. PELP1 enhances transcription functions of ESR1, ESR2, AR, GR, E2F and STAT3.[4][4][4][5][5][7] PELP1 participates in activation of ESR1 extra-nuclear actions[4][29] by coupling ESR1 with Src kinase[32] PI3K[33] STAT3 [21] ILK1 [32] and mTOR[34] PELP1 participates in E2-mediated cell proliferation and is a substrate of CDK4/cyclin D1, CDK2/cyclin E and CDK2/cyclin A complexes.[31] Studies using TG mice model suggested the existence of an autocrine loop involving the CDK–cyclin D1–PELP1 axis in promoting mammary tumorigenesis [35]

PELP1 has a histone binding domain; functions as a reader of histone modifications, interacts with epigenetic modifiers such as HDAC2, KDM1, PRMT6, CARM1; and facilitates activation of genes involved in proliferation and cancer progression.[2][2][22][24][25][26] PELP1 modulates the expression of miRs, PELP1-mediated epigenetic changes play important role in the regulation miR expression and many of PELP1 mediated miRS are involved in promoting metastasis.[36] PELP1 is needed for optimal DNA damage response, is phosphorylated by DDR kinases and is important for p53 coactivation function.[28] PELP1 also interacts with MTp53, regulates its recruitment, and alters MTp53 target gene expression. PELP1 depletion contributes to increased stability of E2F1.[27] PELP1 binds RNA, and participates in RNA splicing. The PELP1-regulated genome includes several uniquely spliced isoforms. Mechanistic studies showed that PELP1 interaction with the arginine methyltransferase PRMT6 plays a role in RNA splicing.[25]

PELP1 plays critical roles in 60S ribosomal subunit synthesis and ribosomal RNA transcription. The SENP3-associated complex comprising PELP1, TEX10 and WDR18 is involved in maturation and nucleolar release of the large ribosomal subunit.[37][38][39] SUMO conjugation/deconjugation of PELP1 controls its dynamic association with the AAA ATPase MDN1, a key factor of pre-60S remodeling. Modification of PELP1 promotes the recruitment of MDN1 to pre-60S particles, while deSUMOylation is needed to release both MDN1 and PELP1 from pre-ribosomes.[40]

PELP1 is widely expressed in many regions of brain, including the hippocampus, hypothalamus, and cerebral cortex. PELP1 interacts with ESR1, Src, PI3K and GSK3β in the brain. It is essential for E2-mediated extra-nuclear signaling following global cerebral ischemic.[6][10] PELP1 plays an essential role in E2-mediated rapid extranuclear signaling, neuroprotection, and cognitive function in the brain.[41] Ability of E2 to exert anti-inflammatory effects was lost in PELP1 forebrain-specific knockout mice, indicating a key role for PELP1 in E2 anti-inflammatory signaling.[42]

PELP1 is a proto-oncogene[43] that provides cancer cells with a distinct growth and survival advantage.[5][9] PELP1 interacts with various enzymes that modulate the cytoskeleton, cell migration, and metastasis.[43][44][45][45] PELP1 deregulation in vivo promotes development of mammary gland hyperplasia and carcinoma [35] PELP1 is implicated in progression of breast,[27][34][43][46] endometrial,[14] ovarian,[33] salivary[47] prostate,[18][19] lung,[48] pancreas,[49] and colon[50] neoplasms.

PELP1 signaling contributes to hormonal therapy resistance.[4][9][9][51] Altered localization of PLP1 contributes to tamoxifen resistance via excessive activation of the AKT pathway [29][52] and cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of tamoxifen.[53] AR, PELP1 and Src form constitutive complexes in prostate neoplasms model cells that exhibit androgen independence.[54] Cytoplasmic localization of PELP1 upregulates pro-tumorigenic IKKε and secrete inflammatory signals, which through paracrine macrophage activation, regulate the migratory phenotype associated with breast cancer initiation.[55]

Clinical significance[edit]

PELP1 is a proto-oncogene that provides cancer cells with a distinct growth and survival advantage. PELP1 overexpression has been reported in many cancers. PELP1 expression is an independent prognostic predictor of shorter breast cancer–specific survival and disease free interval.[56] Patients whose tumors had high levels of cytoplasmic PELP1 exhibited a tendency to respond poorly to tamoxifen [52] and PELP1 deregulated tumors respond to Src kinase[51] and mTOR inhibitors.[34] Treatment of breast and ovarian cancer xenografts with liposomal PELP1–siRNA–DOPC formulations revealed that knockdown of PELP1 significantly reduce the tumor growth.[33][57] These results provided initial proof that PELP1 is a bonafide therapeutic target. Emerging data support a central role for PELP1 and its direct protein–protein interactions in cancer progression. Since PELP1 lacks known enzymatic activity, drugs that target PELP1 interactions with other proteins should have clinical utility. Recent studies described an inhibitor (D2) that block PELP1 interactions with AR.[58] Since PELP1 interacts with histone modifications and epigenetic enzymes, drugs targeting epigenetic modifier enzymes may be useful in targeting PELP1 deregulated tumors.[24][25][26][57]

References[edit]

  1. ^ Vadlamudi RK, Kumar R (2007). "Functional and biological properties of the nuclear receptor coregulator PELP1/MNAR". Nuclear Receptor Signaling. 5: e004. doi:10.1621/nrs.05004. PMC 1876599Freely accessible. PMID 17525794. 
  2. ^ a b c d e f g Choi YB, Ko JK, Shin J (Dec 2004). "The transcriptional corepressor, PELP1, recruits HDAC2 and masks histones using two separate domains". The Journal of Biological Chemistry. 279 (49): 50930–41. doi:10.1074/jbc.M406831200. PMID 15456770. 
  3. ^ a b c d e f g Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, Kumar R (Oct 2001). "Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha". The Journal of Biological Chemistry. 276 (41): 38272–9. doi:10.1074/jbc.M103783200. PMID 11481323. 
  4. ^ a b c d e f Vadlamudi RK, Kumar R (2007-01-01). "Functional and biological properties of the nuclear receptor coregulator PELP1/MNAR". Nuclear Receptor Signaling. 5: e004. doi:10.1621/nrs.05004. PMC 1876599Freely accessible. PMID 17525794. 
  5. ^ a b c d Ravindranathan P, Lange CA, Raj GV (Sep 2015). "Minireview: Deciphering the Cellular Functions of PELP1". Molecular Endocrinology. 29 (9): 1222–9. doi:10.1210/me.2015-1049. PMID 26158753. 
  6. ^ a b Brann DW, Zhang QG, Wang RM, Mahesh VB, Vadlamudi RK (Aug 2008). "PELP1--a novel estrogen receptor-interacting protein". Molecular and Cellular Endocrinology. 290 (1-2): 2–7. doi:10.1016/j.mce.2008.04.019. PMC 2578818Freely accessible. PMID 18571832. 
  7. ^ a b Girard BJ, Daniel AR, Lange CA, Ostrander JH (Jan 2014). "PELP1: a review of PELP1 interactions, signaling, and biology". Molecular and Cellular Endocrinology. 382 (1): 642–51. doi:10.1016/j.mce.2013.07.031. PMC 3844065Freely accessible. PMID 23933151. 
  8. ^ Chakravarty D, Tekmal RR, Vadlamudi RK (Mar 2010). "PELP1: A novel therapeutic target for hormonal cancers". IUBMB Life. 62 (3): 162–9. doi:10.1002/iub.287. PMC 2997573Freely accessible. PMID 20014005. 
  9. ^ a b c d Gonugunta VK, Miao L, Sareddy GR, Ravindranathan P, Vadlamudi R, Raj GV (Aug 2014). "The social network of PELP1 and its implications in breast and prostate cancers". Endocrine-Related Cancer. 21 (4): T79–86. doi:10.1530/ERC-13-0502. PMID 24859989. 
  10. ^ a b Khan MM, Hadman M, Wakade C, De Sevilla LM, Dhandapani KM, Mahesh VB, Vadlamudi RK, Brann DW (Dec 2005). "Cloning, expression, and localization of MNAR/PELP1 in rodent brain: colocalization in estrogen receptor-alpha- but not in gonadotropin-releasing hormone-positive neurons". Endocrinology. 146 (12): 5215–27. doi:10.1210/en.2005-0276. PMID 16141397. 
  11. ^ Pawlak J, Beyer C (Jun 2005). "Developmental expression of MNAR mRNA in the mouse brain". Cell and Tissue Research. 320 (3): 545–9. doi:10.1007/s00441-005-1090-z. PMID 15846512. 
  12. ^ Greger JG, Guo Y, Henderson R, Ross JF, Cheskis BJ (Apr 2006). "Characterization of MNAR expression". Steroids. 71 (4): 317–22. doi:10.1016/j.steroids.2005.09.016. PMID 16297421. 
  13. ^ a b Balasenthil S, Vadlamudi RK (Jun 2003). "Functional interactions between the estrogen receptor coactivator PELP1/MNAR and retinoblastoma protein". The Journal of Biological Chemistry. 278 (24): 22119–27. doi:10.1074/jbc.M212822200. PMC 1262660Freely accessible. PMID 12682072. 
  14. ^ a b Vadlamudi RK, Balasenthil S, Broaddus RR, Gustafsson JA, Kumar R (Dec 2004). "Deregulation of estrogen receptor coactivator proline-, glutamic acid-, and leucine-rich protein-1/modulator of nongenomic activity of estrogen receptor in human endometrial tumors". The Journal of Clinical Endocrinology and Metabolism. 89 (12): 6130–8. doi:10.1210/jc.2004-0909. PMC 1262662Freely accessible. PMID 15579769. 
  15. ^ Rajhans R, Nair HB, Nair SS, Cortez V, Ikuko K, Kirma NB, Zhou D, Holden AE, Brann DW, Chen S, Tekmal RR, Vadlamudi RK (Mar 2008). "Modulation of in situ estrogen synthesis by proline-, glutamic acid-, and leucine-rich protein-1: potential estrogen receptor autocrine signaling loop in breast cancer cells". Molecular Endocrinology. 22 (3): 649–64. doi:10.1210/me.2007-0350. PMC 2262166Freely accessible. PMID 18079323. 
  16. ^ Daniel AR, Gaviglio AL, Knutson TP, Ostrander JH, D'Assoro AB, Ravindranathan P, Peng Y, Raj GV, Yee D, Lange CA (Jan 2015). "Progesterone receptor-B enhances estrogen responsiveness of breast cancer cells via scaffolding PELP1- and estrogen receptor-containing transcription complexes". Oncogene. 34 (4): 506–15. doi:10.1038/onc.2013.579. PMC 4112172Freely accessible. PMID 24469035. 
  17. ^ Kayahara M, Ohanian J, Ohanian V, Berry A, Vadlamudi R, Ray DW (Nov 2008). "MNAR functionally interacts with both NH2- and COOH-terminal GR domains to modulate transactivation". American Journal of Physiology. Endocrinology and Metabolism. 295 (5): E1047–55. doi:10.1152/ajpendo.90429.2008. PMC 2584814Freely accessible. PMID 18682536. 
  18. ^ a b Yang L, Ravindranathan P, Ramanan M, Kapur P, Hammes SR, Hsieh JT, Raj GV (Apr 2012). "Central role for PELP1 in nonandrogenic activation of the androgen receptor in prostate cancer". Molecular Endocrinology. 26 (4): 550–61. doi:10.1210/me.2011-1101. PMID 22403175. 
  19. ^ a b c Nair SS, Guo Z, Mueller JM, Koochekpour S, Qiu Y, Tekmal RR, Schüle R, Kung HJ, Kumar R, Vadlamudi RK (Mar 2007). "Proline-, glutamic acid-, and leucine-rich protein-1/modulator of nongenomic activity of estrogen receptor enhances androgen receptor functions through LIM-only coactivator, four-and-a-half LIM-only protein 2". Molecular Endocrinology. 21 (3): 613–24. doi:10.1210/me.2006-0269. PMC 3725294Freely accessible. PMID 17192406. 
  20. ^ Singh RR, Gururaj AE, Vadlamudi RK, Kumar R (Jun 2006). "9-cis-retinoic acid up-regulates expression of transcriptional coregulator PELP1, a novel coactivator of the retinoid X receptor alpha pathway". The Journal of Biological Chemistry. 281 (22): 15394–404. doi:10.1074/jbc.M601593200. PMID 16574651. 
  21. ^ a b Manavathi B, Nair SS, Wang RA, Kumar R, Vadlamudi RK (Jul 2005). "Proline-, glutamic acid-, and leucine-rich protein-1 is essential in growth factor regulation of signal transducers and activators of transcription 3 activation". Cancer Research. 65 (13): 5571–7. doi:10.1158/0008-5472.CAN-04-4664. PMC 1262663Freely accessible. PMID 15994929. 
  22. ^ a b Nair SS, Mishra SK, Yang Z, Balasenthil S, Kumar R, Vadlamudi RK (Sep 2004). "Potential role of a novel transcriptional coactivator PELP1 in histone H1 displacement in cancer cells". Cancer Research. 64 (18): 6416–23. doi:10.1158/0008-5472.CAN-04-1786. PMID 15374949. 
  23. ^ Rosendorff A, Sakakibara S, Lu S, Kieff E, Xuan Y, DiBacco A, Shi Y, Shi Y, Gill G (Apr 2006). "NXP-2 association with SUMO-2 depends on lysines required for transcriptional repression". Proceedings of the National Academy of Sciences of the United States of America. 103 (14): 5308–13. doi:10.1073/pnas.0601066103. PMC 1459351Freely accessible. PMID 16567619. 
  24. ^ a b c Nair SS, Nair BC, Cortez V, Chakravarty D, Metzger E, Schüle R, Brann DW, Tekmal RR, Vadlamudi RK (Jun 2010). "PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity". EMBO Reports. 11 (6): 438–44. doi:10.1038/embor.2010.62. PMC 2892318Freely accessible. PMID 20448663. 
  25. ^ a b c d Mann M, Zou Y, Chen Y, Brann D, Vadlamudi R (Mar 2014). "PELP1 oncogenic functions involve alternative splicing via PRMT6". Molecular Oncology. 8 (2): 389–400. doi:10.1016/j.molonc.2013.12.012. PMC 3943689Freely accessible. PMID 24447537. 
  26. ^ a b c Mann M, Cortez V, Vadlamudi R (Jul 2013). "PELP1 oncogenic functions involve CARM1 regulation". Carcinogenesis. 34 (7): 1468–75. doi:10.1093/carcin/bgt091. PMC 3697892Freely accessible. PMID 23486015. 
  27. ^ a b c Krishnan SR, Nair BC, Sareddy GR, Roy SS, Natarajan M, Suzuki T, Peng Y, Raj G, Vadlamudi RK (Apr 2015). "Novel role of PELP1 in regulating chemotherapy response in mutant p53-expressing triple negative breast cancer cells". Breast Cancer Research and Treatment. 150 (3): 487–99. doi:10.1007/s10549-015-3339-x. PMC 4385448Freely accessible. PMID 25788226. 
  28. ^ a b c Nair BC, Krishnan SR, Sareddy GR, Mann M, Xu B, Natarajan M, Hasty P, Brann D, Tekmal RR, Vadlamudi RK (Sep 2014). "Proline, glutamic acid and leucine-rich protein-1 is essential for optimal p53-mediated DNA damage response". Cell Death and Differentiation. 21 (9): 1409–18. doi:10.1038/cdd.2014.55. PMC 4131173Freely accessible. PMID 24786831. 
  29. ^ a b c Vadlamudi RK, Manavathi B, Balasenthil S, Nair SS, Yang Z, Sahin AA, Kumar R (Sep 2005). "Functional implications of altered subcellular localization of PELP1 in breast cancer cells". Cancer Research. 65 (17): 7724–32. doi:10.1158/0008-5472.CAN-05-0614. PMC 1343458Freely accessible. PMID 16140940. 
  30. ^ Nagpal JK, Nair S, Chakravarty D, Rajhans R, Pothana S, Brann DW, Tekmal RR, Vadlamudi RK (May 2008). "Growth factor regulation of estrogen receptor coregulator PELP1 functions via Protein Kinase A pathway". Molecular Cancer Research. 6 (5): 851–61. doi:10.1158/1541-7786.MCR-07-2030. PMC 2782677Freely accessible. PMID 18505929. 
  31. ^ a b Nair BC, Nair SS, Chakravarty D, Challa R, Manavathi B, Yew PR, Kumar R, Tekmal RR, Vadlamudi RK (Sep 2010). "Cyclin-dependent kinase-mediated phosphorylation plays a critical role in the oncogenic functions of PELP1". Cancer Research. 70 (18): 7166–75. doi:10.1158/0008-5472.CAN-10-0628. PMC 3058498Freely accessible. PMID 20807815. 
  32. ^ a b Chakravarty D, Nair SS, Santhamma B, Nair BC, Wang L, Bandyopadhyay A, Agyin JK, Brann D, Sun LZ, Yeh IT, Lee FY, Tekmal RR, Kumar R, Vadlamudi RK (May 2010). "Extranuclear functions of ER impact invasive migration and metastasis by breast cancer cells". Cancer Research. 70 (10): 4092–101. doi:10.1158/0008-5472.CAN-09-3834. PMC 2889925Freely accessible. PMID 20460518. 
  33. ^ a b c Chakravarty D, Roy SS, Babu CR, Dandamudi R, Curiel TJ, Vivas-Mejia P, Lopez-Berestein G, Sood AK, Vadlamudi RK (Apr 2011). "Therapeutic targeting of PELP1 prevents ovarian cancer growth and metastasis". Clinical Cancer Research. 17 (8): 2250–9. doi:10.1158/1078-0432.CCR-10-2718. PMC 3731129Freely accessible. PMID 21421858. 
  34. ^ a b c Gonugunta VK, Sareddy GR, Krishnan SR, Cortez V, Roy SS, Tekmal RR, Vadlamudi RK (Jun 2014). "Inhibition of mTOR signaling reduces PELP1-mediated tumor growth and therapy resistance". Molecular Cancer Therapeutics. 13 (6): 1578–88. doi:10.1158/1535-7163.MCT-13-0877. PMC 4226651Freely accessible. PMID 24688046. 
  35. ^ a b Cortez V, Samayoa C, Zamora A, Martinez L, Tekmal RR, Vadlamudi RK (Dec 2014). "PELP1 overexpression in the mouse mammary gland results in the development of hyperplasia and carcinoma". Cancer Research. 74 (24): 7395–405. doi:10.1158/0008-5472.CAN-14-0993. PMC 4268231Freely accessible. PMID 25377474. 
  36. ^ Roy SS, Gonugunta VK, Bandyopadhyay A, Rao MK, Goodall GJ, Sun LZ, Tekmal RR, Vadlamudi RK (Jul 2014). "Significance of PELP1/HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer". Oncogene. 33 (28): 3707–16. doi:10.1038/onc.2013.332. PMC 3935988Freely accessible. PMID 23975430. 
  37. ^ Finkbeiner E, Haindl M, Muller S (Mar 2011). "The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex". The EMBO Journal. 30 (6): 1067–78. doi:10.1038/emboj.2011.33. PMC 3061037Freely accessible. PMID 21326211. 
  38. ^ Gonugunta VK, Nair BC, Rajhans R, Sareddy GR, Nair SS, Vadlamudi RK (2011-01-01). "Regulation of rDNA transcription by proto-oncogene PELP1". PLOS ONE. 6 (6): e21095. doi:10.1371/journal.pone.0021095. PMC 3113909Freely accessible. PMID 21695158. 
  39. ^ Castle CD, Cassimere EK, Denicourt C (Feb 2012). "LAS1L interacts with the mammalian Rix1 complex to regulate ribosome biogenesis". Molecular Biology of the Cell. 23 (4): 716–28. doi:10.1091/mbc.E11-06-0530. PMC 3279398Freely accessible. PMID 22190735. 
  40. ^ van Belkum, A; Boekhout, T; Bosboom, R (October 1994). "Monitoring spread of Malassezia infections in a neonatal intensive care unit by PCR-mediated genetic typing.". Journal of clinical microbiology. 32 (10): 2528–32. PMID 7814492. 
  41. ^ Sareddy, GR; Zhang, Q; Wang, R; Scott, E; Zou, Y; O'Connor, JC; Chen, Y; Dong, Y; Vadlamudi, RK; Brann, D (1 December 2015). "Proline-, glutamic acid-, and leucine-rich protein 1 mediates estrogen rapid signaling and neuroprotection in the brain.". Proceedings of the National Academy of Sciences of the United States of America. 112 (48): E6673–82. PMID 26627258. 
  42. ^ Thakkar, R; Wang, R; Sareddy, G; Wang, J; Thiruvaiyaru, D; Vadlamudi, R; Zhang, Q; Brann, D (2016). "NLRP3 Inflammasome Activation in the Brain after Global Cerebral Ischemia and Regulation by 17β-Estradiol.". Oxidative medicine and cellular longevity. 2016: 8309031. PMID 27843532. 
  43. ^ a b c Rajhans R, Nair S, Holden AH, Kumar R, Tekmal RR, Vadlamudi RK (Jun 2007). "Oncogenic potential of the nuclear receptor coregulator proline-, glutamic acid-, leucine-rich protein 1/modulator of the nongenomic actions of the estrogen receptor". Cancer Research. 67 (11): 5505–12. doi:10.1158/0008-5472.CAN-06-3647. PMC 2774841Freely accessible. PMID 17545633. 
  44. ^ Chakravarty D, Roy SS, Babu CR, Dandamudi R, Curiel TJ, Vivas-Mejia P, Lopez-Berestein G, Sood AK, Vadlamudi RK (Apr 2011). "Therapeutic targeting of PELP1 prevents ovarian cancer growth and metastasis". Clinical Cancer Research. 17 (8): 2250–9. doi:10.1158/1078-0432.CCR-10-2718. PMC 3731129Freely accessible. PMID 21421858. 
  45. ^ a b Roy S, Chakravarty D, Cortez V, De Mukhopadhyay K, Bandyopadhyay A, Ahn JM, Raj GV, Tekmal RR, Sun L, Vadlamudi RK (Jan 2012). "Significance of PELP1 in ER-negative breast cancer metastasis". Molecular Cancer Research. 10 (1): 25–33. doi:10.1158/1541-7786.MCR-11-0456. PMC 3262052Freely accessible. PMID 22086908. 
  46. ^ Zhang Y, Dai J, McNamara KM, Bai B, Shi M, Chan MS, Liu M, Sasano H, Wang X, Li X, Liu L, Ma Y, Cao S, Xing Y, Zhao B, Song Y, Wang L (2015-01-01). "Prognostic significance of proline, glutamic acid, leucine rich protein 1 (PELP1) in triple-negative breast cancer: a retrospective study on 129 cases". BMC Cancer. 15: 699. doi:10.1186/s12885-015-1694-y. PMC 4608314Freely accessible. PMID 26472563. 
  47. ^ Vadlamudi RK, Balasenthil S, Sahin AA, Kies M, Weber RS, Kumar R, El-Naggar AK (Jun 2005). "Novel estrogen receptor coactivator PELP1/MNAR gene and ERbeta expression in salivary duct adenocarcinoma: potential therapeutic targets". Human Pathology. 36 (6): 670–5. doi:10.1016/j.humpath.2005.03.016. PMID 16021574. 
  48. ^ Słowikowski BK, Gałęcki B, Dyszkiewicz W, Jagodziński PP (Jul 2015). "Increased expression of proline-, glutamic acid- and leucine-rich protein PELP1 in non-small cell lung cancer". Biomedicine & Pharmacotherapy = Biomédecine & Pharmacothérapie. 73: 97–101. doi:10.1016/j.biopha.2015.05.015. PMID 26211588. 
  49. ^ Kashiwaya K, Nakagawa H, Hosokawa M, Mochizuki Y, Ueda K, Piao L, Chung S, Hamamoto R, Eguchi H, Ohigashi H, Ishikawa O, Janke C, Shinomura Y, Nakamura Y (May 2010). "Involvement of the tubulin tyrosine ligase-like family member 4 polyglutamylase in PELP1 polyglutamylation and chromatin remodeling in pancreatic cancer cells". Cancer Research. 70 (10): 4024–33. doi:10.1158/0008-5472.CAN-09-4444. PMID 20442285. 
  50. ^ Ning Z, Zhang Y, Chen H, Wu J, Song T, Wu Q, Liu F (2014-01-01). "PELP1 suppression inhibits colorectal cancer through c-Src downregulation". Oxidative Medicine and Cellular Longevity. 2014: 193523. doi:10.1155/2014/193523. PMC 4055551Freely accessible. PMID 24967003. 
  51. ^ a b Vallabhaneni S, Nair BC, Cortez V, Challa R, Chakravarty D, Tekmal RR, Vadlamudi RK (Nov 2011). "Significance of ER-Src axis in hormonal therapy resistance". Breast Cancer Research and Treatment. 130 (2): 377–85. doi:10.1007/s10549-010-1312-2. PMC 3243930Freely accessible. PMID 21184269. 
  52. ^ a b Kumar R, Zhang H, Holm C, Vadlamudi RK, Landberg G, Rayala SK (Jun 2009). "Extranuclear coactivator signaling confers insensitivity to tamoxifen". Clinical Cancer Research. 15 (12): 4123–30. doi:10.1158/1078-0432.CCR-08-2347. PMC 2756964Freely accessible. PMID 19470742. 
  53. ^ Girard BJ, Regan Anderson TM, Welch SL, Nicely J, Seewaldt VL, Ostrander JH (2015-01-01). "Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death". PLOS ONE. 10 (3): e0121206. doi:10.1371/journal.pone.0121206. PMC 4366195Freely accessible. PMID 25789479. 
  54. ^ Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M (Oct 2004). "Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence". Cancer Research. 64 (19): 7156–68. doi:10.1158/0008-5472.CAN-04-1121. PMID 15466214. 
  55. ^ Girard, BJ; Knutson, TP; Kuker, B; McDowell, L; Schwertfeger, KL; Ostrander, JH (23 November 2016). "Cytoplasmic Localization of Proline, Glutamic Acid, Leucine Rich Protein 1 (PELP1) Induces Breast Epithelial Cell Migration through Upregulation of Inhibitor of kappa B Kinase Epsilon and Inflammatory Crosstalk with Macrophages.". The Journal of biological chemistry. PMID 27881676. 
  56. ^ Habashy HO, Powe DG, Rakha EA, Ball G, Macmillan RD, Green AR, Ellis IO (Apr 2010). "The prognostic significance of PELP1 expression in invasive breast cancer with emphasis on the ER-positive luminal-like subtype". Breast Cancer Research and Treatment. 120 (3): 603–12. doi:10.1007/s10549-009-0419-9. PMID 19495959. 
  57. ^ a b Cortez V, Mann M, Tekmal S, Suzuki T, Miyata N, Rodriguez-Aguayo C, Lopez-Berestein G, Sood AK, Vadlamudi RK (2012-01-01). "Targeting the PELP1-KDM1 axis as a potential therapeutic strategy for breast cancer". Breast Cancer Research. 14 (4): R108. doi:10.1186/bcr3229. PMC 3680946Freely accessible. PMID 22812534. 
  58. ^ Ravindranathan P, Lee TK, Yang L, Centenera MM, Butler L, Tilley WD, Hsieh JT, Ahn JM, Raj GV (2013-01-01). "Peptidomimetic targeting of critical androgen receptor-coregulator interactions in prostate cancer". Nature Communications. 4: 1923. doi:10.1038/ncomms2912. PMID 23715282. 

External links[edit]