PFKFB3

From Wikipedia, the free encyclopedia
Jump to: navigation, search
PFKFB3
Protein PFKFB3 PDB 2axn.png
Available structures
PDB Human UniProt search: PDBe RCSB
Identifiers
Aliases PFKFB3, IPFK2, PFK2, iPFK-2, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
External IDs MGI: 2181202 HomoloGene: 88708 GeneCards: 5209
RNA expression pattern
PBB GE PFKFB3 202464 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)

NP_001269559.1
NP_004557.1
NP_001300992.1

n/a

Location (UCSC) Chr 10: 6.14 – 6.24 Mb Chr 2: 11.47 – 11.55 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

PFKFB3 is a gene that encodes the 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 enzyme in humans.[1][2][3] It is one of 4 tissue-specific PFKFB isoenzymes identified currently (PFKFB1-4).[4]

Gene[edit]

The PFKFB3 gene is mapped to single locus on chromosome 10 (10p15-p14).[1][2] It spans a region of 32.5kb with an open reading frame that is 5,675bp long. It is estimated to consist of 19 exons, of which 15 are regularly expressed.[4] Alternative splicing of the variable, COOH-terminal domain has been observed, leading to 6 different isoforms termed UBI2K1 to UBI2K6 in humans.[5] Different nomenclature also recognizes two broad categories of PFKFB3 isoforms, termed ‘inducible’ and ‘ubiquitous’.[6] The inducible protein isoform, iPFK2, is named as such because its expression has been shown to be induced by hypoxic conditions.

The PFKFB3 promoter is predicted to contain multiple binding sites, including Sp-1 and AP-2 binding sites. It also contains motifs for the binding of E-box, nuclear factor-1 (NF-1), and progesterone response element. Expression of the promoter is shown to be induce by phorbol esters and cyclic-AMP-dependent protein kinase signaling.[6]

Structure[edit]

The four PFKFB isoforms share high (85%) ‘2-Kase/2-Pase core’ sequence homology, but have different properties based on variable N- and C- terminal regulatory domains and variation in residues surrounding the surrounding the active sites.[7] The PFKFB3 inducible isoform has higher ‘2-Kase’ (kinase) activity than other isoforms, due to phosphorylation of Ser-460 by PKA or AMP-dependent protein kinase.[7] The high ‘2-Kase’ activity of PFKFB3 is also due to the lack of a specific Ser that is phosphorylated in the other PFKFB isoforms to decrease kinase activity.[8]

The primary protein encoded by PFKFB3, iPFK2, consists of 590 amino acids. It has a predicted molecular weight of 66.9 kDa and an isoelectric point of 8.64.[4] The crystal structure was determined in 2006:[7]

  • Researcher found that iPFK2 has a beta-hairpin N-terminal structure that secures the binding of fructose-6-phosphate to the active site via interaction with the protein’s ‘2-Pase’ domain. There are two active pockets within iPFK2 for fructose-2,6-bisphosphatase and 6-phosphofructo-2-kinase which are structurally different. The F-2,6-BP active site structurally open, while the active pocket of 6-phosphofructo-2-kinase is more rigid. This rigidity permits the independent binding of F-6-P and ATP with increased affinity than other isoforms.

Function[edit]

iPFK2 converts fructose-6-phosphate to fructose-2,6-bisP (F2,6BP). F2,6BP is a ‘potent’ allosteric activator of 6-phosphofructokinase-1 (PFK-1), stimulating glycolysis. Click to see image of PFFKB3 function.

Cancer Connections[edit]

Warburg Effect[edit]

The Warburg effect, proposed by Otto Warbug in 1956,[9] describes the upregulation of glycolysis in most cancer cells, even in the presence of oxygen. The high rate of glycolysis is accompanied by increased lactic acid fermentation, providing additional nutrients for cancer cell growth and tumorigenesis.

PFKFB3 is associated with the Warburg effect because its activity increases the rate of glycolysis. PFKFB3 has been found to be upregulated in numerous cancers, including colon, breast, ovarian, and thyroid.[10] Reduced methylation of PFKFB3 is also found in some cancers, triggering the shift to the glycolytic pathway that supports cancerous growth.[11]

Hypoxia Signaling Pathway[edit]

PFKFB3 expression is induced by hypoxia.[12] The promoter of PFKFB3 contains binding sites, called hypoxia response elements (HREs), that recruit the binding of hypoxia-inducible factor-1 (HIF-1).[13]

Hypoxia signaling via HIF-1α stabilization upregulates the transcription of genes that permit survival in low oxygen conditions. These genes include glycolysis enzymes, like PFKFB3, that permit ATP synthesis without oxygen, and vascular endothelial growth factor (VEGF), which promotes angiogenesis.

Cell Cycle & Apoptosis[edit]

It was more recently discovered that PFKFB3 promotes cell cycle progression (cell proliferation) and suppresses apoptosis by regulating cyclin-dependent kinase 1 (Cdk-1). PFKFB3’s synthesis of F2,6BP in the nucleus was found to regulate Cdk-1, whereas cytosolic PFKFB3 activates PFK-1. Nuclear PFKFB3 activates Cdk1 to phosphorylate the Thr-187 site of p27, causing decreased levels of p27.[14][15] (See summary figure). Reduced p27 causes protection against apoptosis and progression of cells through the G1/S phase checkpoint These findings established a significant link between PFKFB3 cancer cell survival and proliferation.

Circadian Clock[edit]

Circadian clocks dysregulation is associated with many types of cancer.[16] PFKFB3 expression exhibits circadian rhythmicity that is different between cancerous and non-cancerous cells.[17] It was specifically found that the circadian-driven transcription factor ‘CLOCK’ binds to the PFKFB3 promoter at a genuine ‘E-box’ site to increase transcription in cancer cells.

  • Inhibition of PFKFB3 using 3PO was successful in reducing cancer growth and increasing apoptosis, but only at certain time points within the circadian cycle. This finding highlights the need for time-based PFKFB3 inhibition in cancer treatment.

Additional Cancer Connections[edit]

  • PFKFB3 is activated by progestins in breast cancer cells[18]
  • PFKFB3 promotes angiogenesis
    • Silencing of PFKFB3 impairs angiogenesis. PFKFB3-driven glycolysis overrules the pro-stalk activity of Notch. PFKFB3 regulates tip and stalk cell behavior and compartmentalizes with F-actin.[19]

Anti-cancer Therapeutic Strategy[edit]

Inhibition of PFKFB3 is being analyzed as a potential anti-cancer therapy. Various small molecule inhibitors of PFKFB3 are currently in development. The most prominent inhibitor is 3PO, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one. 3PO is a small molecule inhibitor that decreases glucose uptake and increases autophagy.[20] Research is currently exploring various 3PO derivatives (ie. PFKF15)[21] in an effort to increase their efficacy as anti-cancer therapies.

Other Pathways Involving PFKFB3[edit]

Autophagy[edit]

Enhanced activity of PFKFB3 accelerates ROS production as an end product of glycolysis, and thus increases autophagy. Likewise, inhibition of PFKFB3 has been found to induce autophagy.[22][23] See summary image.

Autophagy can prolong cellular survival during low energy conditions. This finding was discovered in relation to rheumatoid arthritis.[24] It was found that RA T cell fail to upregulate autophagy, and knockout experiments placed PFKFB3 as an upstream regulator of this process.

Insulin Signaling Pathway[edit]

PFKFB3 was identified in a kinome screen as a regulator of insulin/IGF-1. Suppression of PFKFB3 was found to decrease insulin-stimulated glucose uptake, GLUT4 translocation, and Akt signaling in 3T3-L1 adipocytes. Overexpression caused the insulin-dependent phosphorylation of Akt and Akt substrates.[25]

PFKFB3 expression increases in fat tissues during adipogenesis, but prolonged insulin exposure has been shown to decrease the expression of PFKFB3. This is thought to occur due to a negative feedback mechanism involving insulin.[26]

p38/MK2 Stress Sigaling Pathway[edit]

p38 MAPK have been found to increase PFKFB3 activity through (1) the transcriptional activation of PFKFB3 in response to stress stimuli and (2) the post-translational phosphorylation of iPFK2 at Ser-461.[27][28]

See summary figure.[28]

References[edit]

  1. ^ a b Nicholl J, Hamilton JA, Sutherland GR, Sutherland RL, Watts CK (April 1997). "The third human isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) map position 10p14-p15". Chromosome Research 5 (2): 150. PMID 9146922. 
  2. ^ a b Manzano A, Rosa JL, Ventura F, Pérez JX, Nadal M, Estivill X, Ambrosio S, Gil J, Bartrons R (Mar 1999). "Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/ fructose-2, 6-bisphosphatase gene (PFKFB3)". Cytogenetics and Cell Genetics 83 (3-4): 214–7. doi:10.1159/000015181. PMID 10072580. 
  3. ^ "Entrez Gene: PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3". 
  4. ^ a b c Mahlknecht U, Chesney J, Hoelzer D, Bucala R (October 2003). "Cloning and chromosomal characterization of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 gene (PFKFB3, iPFK2)". International Journal of Oncology 23 (4): 883–91. PMID 12963966. 
  5. ^ Kessler R, Eschrich K (March 2001). "Splice isoforms of ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in human brain". Brain Research. Molecular Brain Research 87 (2): 190–5. PMID 11245921. 
  6. ^ a b Navarro-Sabaté A, Manzano A, Riera L, Rosa JL, Ventura F, Bartrons R (February 2001). "The human ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene (PFKFB3): promoter characterization and genomic structure". Gene 264 (1): 131–8. doi:10.1016/S0378-1119(00)00591-6. PMID 11245987. 
  7. ^ a b c Kim, Song-Gun; Manes, Nathan P.; El-Maghrabi, M. Raafat; Lee, Yong-Hwan (2006-02-03). "Crystal Structure of the Hypoxia-inducible Form of 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) A POSSIBLE NEW TARGET FOR CANCER THERAPY". Journal of Biological Chemistry 281 (5): 2939–2944. doi:10.1074/jbc.M511019200. ISSN 0021-9258. PMID 16316985. 
  8. ^ Sakakibara R, Kato M, Okamura N, Nakagawa T, Komada Y, Tominaga N, Shimojo M, Fukasawa M (July 1997). "Characterization of a human placental fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase". Journal of Biochemistry 122 (1): 122–8. PMID 9276680. 
  9. ^ Warburg, Otto (1956-02-24). "On the Origin of Cancer Cells". Science 123 (3191): 309–314. doi:10.1126/science.123.3191.309. ISSN 0036-8075. PMID 13298683. 
  10. ^ Atsumi, Toshiya; Chesney, Jason; Metz, Christine; Leng, Lin; Donnelly, Seamas; Makita, Zenji; Mitchell, Robert; Bucala, Richard (2002-10-15). "High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers". Cancer Research 62 (20): 5881–5887. ISSN 0008-5472. PMID 12384552. 
  11. ^ Yamamoto, Takehiro; Takano, Naoharu; Ishiwata, Kyoko; Ohmura, Mitsuyo; Nagahata, Yoshiko; Matsuura, Tomomi; Kamata, Aki; Sakamoto, Kyoko; Nakanishi, Tsuyoshi (2014-03-17). "Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway". Nature Communications 5: 3480. doi:10.1038/ncomms4480. PMC 3959213. PMID 24633012. 
  12. ^ Minchenko, Alexander; Leshchinsky, Irene; Opentanova, Irina; Sang, Nianli; Srinivas, Vickram; Armstead, Valerie; Caro, Jaime (2002-02-22). "Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect". The Journal of Biological Chemistry 277 (8): 6183–6187. doi:10.1074/jbc.M110978200. ISSN 0021-9258. PMC 4518871. PMID 11744734. 
  13. ^ Obach, Mercè; Navarro-Sabaté, Aurea; Caro, Jaime; Kong, Xianguo; Duran, Joan; Gómez, Marta; Perales, Jose Carlos; Ventura, Francesc; Rosa, Jose Luis (2004-12-17). "6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia". The Journal of Biological Chemistry 279 (51): 53562–53570. doi:10.1074/jbc.M406096200. ISSN 0021-9258. PMID 15466858. 
  14. ^ Yalcin, Abdullah; Clem, Brian F.; Simmons, Alan; Lane, Andrew; Nelson, Kristin; Clem, Amy L.; Brock, Erin; Siow, Deanna; Wattenberg, Binks (2009-09-04). "Nuclear Targeting of 6-Phosphofructo-2-kinase (PFKFB3) Increases Proliferation via Cyclin-dependent Kinases". Journal of Biological Chemistry 284 (36): 24223–24232. doi:10.1074/jbc.M109.016816. ISSN 0021-9258. PMC 2782016. PMID 19473963. 
  15. ^ Yalcin, A.; Clem, B. F.; Imbert-Fernandez, Y.; Ozcan, S. C.; Peker, S.; O'Neal, J.; Klarer, A. C.; Clem, A. L.; Telang, S. (2014-07-17). "6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27". Cell Death & Disease 5 (7): e1337. doi:10.1038/cddis.2014.292. PMC 4123086. PMID 25032860. 
  16. ^ Savvidis, C; Michael, Koutsilieris (2012). "Circadian Rhythm Disruption in Cancer Biology". Molecular Medicine 18 (1): 1249–1260. doi:10.2119/molmed.2012.00077. PMC 3521792. 
  17. ^ Chen, Lili; Zhao, Jiajia; Tang, Qingming; Li, Honggui; Zhang, Chenguang; Yu, Ran; Zhao, Yan; Huo, Yuqing; Wu, Chaodong (2016-01-01). "PFKFB3 Control of Cancer Growth by Responding to Circadian Clock Outputs". Scientific Reports 6: 24324. doi:10.1038/srep24324. ISSN 2045-2322. PMC 4832144. PMID 27079271. 
  18. ^ Novellasdemunt, Laura; Obach, Mercè; Millán-Ariño, Lluís; Manzano, Anna; Ventura, Francesc; Rosa, Jose Luis; Jordan, Albert; Navarro-Sabate, Àurea; Bartrons, Ramon (2012-03-01). "Progestins activate 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in breast cancer cells". Biochemical Journal 442 (2): 345–356. doi:10.1042/BJ20111418. ISSN 0264-6021. PMID 22115192. 
  19. ^ De Bock, Katrien; Georgiadou, Maria; Schoors, Sandra; Kuchnio, Anna; Wong, Brian W.; Cantelmo, Anna Rita; Quaegebeur, Annelies; Ghesquière, Bart; Cauwenberghs, Sandra (2013-08-01). "Role of PFKFB3-Driven Glycolysis in Vessel Sprouting". Cell 154 (3): 651–663. doi:10.1016/j.cell.2013.06.037. ISSN 0092-8674. PMID 23911327. 
  20. ^ Klarer, Alden C; O’Neal, Julie; Imbert-Fernandez, Yoannis; Clem, Amy; Ellis, Steve R; Clark, Jennifer; Clem, Brian; Chesney, Jason; Telang, Sucheta (2014-01-23). "Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism". Cancer & Metabolism 2 (1). doi:10.1186/2049-3002-2-2. ISSN 2049-3002. PMC 3913946. PMID 24451478. 
  21. ^ Clem, Brian F.; O'Neal, Julie; Tapolsky, Gilles; Clem, Amy L.; Imbert-Fernandez, Yoannis; Kerr, Daniel A.; Klarer, Alden C.; Redman, Rebecca; Miller, Donald M. (2013-08-01). "Targeting 6-Phosphofructo-2-Kinase (PFKFB3) as a Therapeutic Strategy against Cancer". Molecular Cancer Therapeutics 12 (8): 1461–1470. doi:10.1158/1535-7163.MCT-13-0097. ISSN 1535-7163. PMC 3742633. PMID 23674815. 
  22. ^ Klarer, Alden C.; O’Neal, Julie; Imbert-Fernandez, Yoannis; Clem, Amy; Ellis, Steve R.; Clark, Jennifer; Clem, Brian; Chesney, Jason; Telang, Sucheta (2014-01-01). "Inhibition of 6-phosphofructo-2-kinase (PFKFB3) induces autophagy as a survival mechanism". Cancer & Metabolism 2: 2. doi:10.1186/2049-3002-2-2. ISSN 2049-3002. PMC 3913946. PMID 24451478. 
  23. ^ Yang, Zhen; Goronzy, Jörg J.; Weyand, Cornelia M. (2014-02-26). "The glycolytic enzyme PFKFB3/phosphofructokinase regulates autophagy". Autophagy 10 (2): 382–383. doi:10.4161/auto.27345. ISSN 1554-8627. PMID 24351650. 
  24. ^ Yang, Zhen; Fujii, Hiroshi; Mohan, Shalini V.; Goronzy, Jorg J.; Weyand, Cornelia M. (2013-09-23). "Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells". The Journal of Experimental Medicine 210 (10): 2119–2134. doi:10.1084/jem.20130252. ISSN 1540-9538. PMC 3782046. PMID 24043759. 
  25. ^ Trefely, Sophie; Khoo, Poh-Sim; Krycer, James R.; Chaudhuri, Rima; Fazakerley, Daniel J.; Parker, Benjamin L.; Sultani, Ghazal; Lee, James; Stephan, Jean-Philippe (2015-10-23). "Kinome Screen Identifies PFKFB3 and Glucose Metabolism as Important Regulators of the Insulin/Insulin-like Growth Factor (IGF)-1 Signaling Pathway". Journal of Biological Chemistry 290 (43): 25834–25846. doi:10.1074/jbc.M115.658815. ISSN 0021-9258. PMC 4646237. PMID 26342081. 
  26. ^ Atsumi, Toshiya; Nishio, Taro; Niwa, Hirokatsu; Takeuchi, Jun; Bando, Hidenori; Shimizu, Chikara; Yoshioka, Narihito; Bucala, Richard; Koike, Takao (2005-12-01). "Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation". Diabetes 54 (12): 3349–3357. ISSN 0012-1797. PMID 16306349. 
  27. ^ Novellasdemunt, Laura; Bultot, Laurent; Manzano, Anna; Ventura, Francesc; Rosa, Jose Luis; Vertommen, Didier; Rider, Mark H.; Navarro-Sabate, Àurea; Bartrons, Ramon (2013-06-15). "PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli". Biochemical Journal 452 (3): 531–543. doi:10.1042/bj20121886. ISSN 0264-6021. 
  28. ^ a b Bolaños, Juan P. (2013-06-15). "Adapting glycolysis to cancer cell proliferation: the MAPK pathway focuses on PFKFB3: Figure 1". Biochemical Journal 452 (3): e7–e9. doi:10.1042/bj20130560. ISSN 0264-6021. 

Further reading[edit]

  • Sakai A, Kato M, Fukasawa M, Ishiguro M, Furuya E, Sakakibara R (March 1996). "Cloning of cDNA encoding for a novel isozyme of fructose 6-phosphate, 2-kinase/fructose 2,6-bisphosphatase from human placenta". Journal of Biochemistry 119 (3): 506–11. doi:10.1093/oxfordjournals.jbchem.a021270. PMID 8830046. 
  • Hamilton JA, Callaghan MJ, Sutherland RL, Watts CK (April 1997). "Identification of PRG1, a novel progestin-responsive gene with sequence homology to 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase". Molecular Endocrinology 11 (4): 490–502. doi:10.1210/me.11.4.490. PMID 9092801. 
  • Sakakibara R, Kato M, Okamura N, Nakagawa T, Komada Y, Tominaga N, Shimojo M, Fukasawa M (July 1997). "Characterization of a human placental fructose-6-phosphate, 2-kinase/fructose-2,6-bisphosphatase". Journal of Biochemistry 122 (1): 122–8. doi:10.1093/oxfordjournals.jbchem.a021719. PMID 9276680. 
  • Scanlan MJ, Gordan JD, Williamson B, Stockert E, Bander NH, Jongeneel V, Gure AO, Jäger D, Jäger E, Knuth A, Chen YT, Old LJ (November 1999). "Antigens recognized by autologous antibody in patients with renal-cell carcinoma". International Journal of Cancer 83 (4): 456–64. doi:10.1002/(SICI)1097-0215(19991112)83:4<456::AID-IJC4>3.0.CO;2-5. PMID 10508479. 
  • Fukasawa M, Takayama E, Shinomiya N, Okumura A, Rokutanda M, Yamamoto N, Sakakibara R (January 2000). "Identification of the promoter region of human placental 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene". Biochemical and Biophysical Research Communications 267 (3): 703–8. doi:10.1006/bbrc.1999.2022. PMID 10673355. 
  • Kessler R, Eschrich K (March 2001). "Splice isoforms of ubiquitous 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in human brain". Brain Research. Molecular Brain Research 87 (2): 190–5. doi:10.1016/S0169-328X(01)00014-6. PMID 11245921. 
  • Riera L, Obach M, Navarro-Sabaté A, Duran J, Perales JC, Viñals F, Rosa JL, Ventura F, Bartrons R (August 2003). "Regulation of ubiquitous 6-phosphofructo-2-kinase by the ubiquitin-proteasome proteolytic pathway during myogenic C2C12 cell differentiation". FEBS Letters 550 (1-3): 23–9. doi:10.1016/S0014-5793(03)00808-1. PMID 12935880. 
  • Obach M, Navarro-Sabaté A, Caro J, Kong X, Duran J, Gómez M, Perales JC, Ventura F, Rosa JL, Bartrons R (December 2004). "6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia". The Journal of Biological Chemistry 279 (51): 53562–70. doi:10.1074/jbc.M406096200. PMID 15466858. 
  • Manes NP, El-Maghrabi MR (June 2005). "The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate". Archives of Biochemistry and Biophysics 438 (2): 125–36. doi:10.1016/j.abb.2005.04.011. PMID 15896703. 
  • Minchenko OH, Ogura T, Opentanova IL, Minchenko DO, Esumi H (December 2005). "Splice isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4: expression and hypoxic regulation". Molecular and Cellular Biochemistry 280 (1-2): 227–34. doi:10.1007/s11010-005-8009-6. PMID 16311927.