PPARGC1A

From Wikipedia, the free encyclopedia
Jump to: navigation, search
PPARGC1A
PDB 1xb7 EBI.jpg
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PPARGC1A, LEM6, PGC-1(alpha), PGC-1v, PGC1, PGC1A, PPARGC1, PGC-1alpha, PPARG coactivator 1 alpha
External IDs MGI: 1342774 HomoloGene: 7485 GeneCards: 10891
RNA expression pattern
PBB GE PPARGC1A 219195 at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_013261

NM_008904

RefSeq (protein)

NP_037393.1

NP_032930.1

Location (UCSC) Chr 4: 23.76 – 23.9 Mb Chr 5: 51.45 – 51.57 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a protein that in humans is encoded by the PPARGC1A gene.[3] PPARGC1A is also known as human accelerated region 20 (HAR20). It may, therefore, have played a key role in differentiating humans from apes.[4]

PGC-1α is the master regulator of mitochondrial biogenesis.[5][6][7]

Function[edit]

PGC-1α is a transcriptional coactivator that regulates the genes involved in energy metabolism. It is the master regulator of mitochondrial biogenesis.[5][6][7] This protein interacts with the nuclear receptor PPAR-γ, which permits the interaction of this protein with multiple transcription factors. This protein can interact with, and regulate the activities of, cAMP response element-binding protein (CREB) and nuclear respiratory factors (NRFs). It provides a direct link between external physiological stimuli and the regulation of mitochondrial biogenesis, and is a major factor that regulates muscle fiber type determination. Endurance exercise has been shown to activate the PGC-1α gene in human skeletal muscle.[8] This protein may be also involved in controlling blood pressure, regulating cellular cholesterol homoeostasis, and the development of obesity.[9]

Regulation[edit]

PGC-1α is thought to be a master integrator of external signals. It is known to be activated by a host of factors, including:

  1. Reactive oxygen species (ROS) and reactive nitrogen species (RNS), both formed endogenously in the cell as by-products of metabolism but upregulated during times of cellular stress.
  2. It is strongly induced by cold exposure, linking this environmental stimulus to adaptive thermogenesis.[10]
  3. It is induced by endurance exercise[8] and recent research has shown that PGC-1α determines lactate metabolism, thus preventing high lactate levels in endurance athletes and making lactate as an energy source more efficient.[11]
  4. cAMP response element-binding (CREB) proteins, activated by an increase in cAMP following external cellular signals.
  5. Protein kinase B / Akt is thought to downregulate PGC-1α, but upregulate its downstream effectors, NRF1 and NRF2. Akt itself is activated by PIP3, often upregulated by PI3K after G-protein signals. The Akt family is also known to activate pro-survival signals as well as metabolic activation.
  6. SIRT1 binds and activates PGC-1α through deacetylation.

PGC-1α has recently been shown to exert positive feedback circuits on some of its upstream regulators:

  1. PGC-1α increases Akt (PKB) and Phospho-Akt (Ser 473 and Thr 308) levels in muscle.[12]
  2. PGC-1α leads to calcineurin activation.[13]

Akt and calcineurin are both activators of NF kappa B (p65).[14][15] Through their activation PGC-1α seems to activate NF kappa B. Increased activity of NF kappa B in muscle has recently been demonstrated following induction of PGC-1α.[16] The finding seems to be controversial. Other groups found that PGC-1s inhibit NF kappa B activity.[17] The effect was demonstrated for PGC-1 alpha and beta.

Clinical significance[edit]

Recently PPARGC1A has been implicated as a potential therapy for Parkinson's Disease conferring protective effects on mitochondrial metabolism.[18]

Moreover, brain-specific isoforms of PGC-1alpha have recently been identified which are likely to play a role in other neurodegenerative disorders such as Huntington's disease and Amyotrophic lateral sclerosis.[19][20]

Massage therapy appears to increase the amount of PGC-1α which leads to the production of new mitochondria.[21][22][23]

PGC-1α and beta has furthermore been implicated in M2 macrophage polarization by interaction with PPARγ[24] with upstream activation of STAT6.[25] An independent study confirmed the effect of PGC-1 on polarisation of macrophages towards M2 via STAT6/PPAR gamma and furthermore demonstrated that PGC-1 inhibits proinflammatory cytokine production.[26]

PGC-1α has been recently proposed to be responsible for β-aminoisobutyric acid secretion by exercising muscles.[27] The effect of β-aminoisobutyric acid in white fat includes the activation of thermogenic genes that prompt the browning of white adipose tissue and the consequent increase of background metabolism. Hence, the β-aminoisobutyric acid could act as a messenger molecule of PGC-1α and explain the effects of PGC-1α increase in other tissues such as white fat.

Interactions[edit]

PPARGC1A has been shown to interact with:

ERRalpha and PGC-1α are coactivators of both Glucokinase (GK) and SIRT3, binding to an ERRE elements in the GK and SIRT3 promoters.

See also[edit]

References[edit]

  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ Esterbauer H, Oberkofler H, Krempler F, Patsch W (Feb 2000). "Human peroxisome proliferator activated receptor gamma coactivator 1 (PPARGC1) gene: cDNA sequence, genomic organization, chromosomal localization, and tissue expression". Genomics. 62 (1): 98–102. doi:10.1006/geno.1999.5977. PMID 10585775. 
  4. ^ Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, Katzman S, King B, Onodera C, Siepel A, Kern AD, Dehay C, Igel H, Ares M, Vanderhaeghen P, Haussler D (September 2006). "An RNA gene expressed during cortical development evolved rapidly in humans". Nature. 443 (7108): 167–72. doi:10.1038/nature05113. PMID 16915236. 
  5. ^ a b Valero T (2014). "Mitochondrial biogenesis: pharmacological approaches". Curr. Pharm. Des. 20 (35): 5507–9. doi:10.2174/138161282035140911142118. PMID 24606795. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. ... This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. 
  6. ^ a b Sanchis-Gomar F, García-Giménez JL, Gómez-Cabrera MC, Pallardó FV (2014). "Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches". Curr. Pharm. Des. 20 (35): 5619–5633. doi:10.2174/1381612820666140306095106. PMID 24606801. Mitochondrial biogenesis (MB) is the essential mechanism by which cells control the number of mitochondria. 
  7. ^ a b Dorn GW, Vega RB, Kelly DP (2015). "Mitochondrial biogenesis and dynamics in the developing and diseased heart". Genes Dev. 29 (19): 1981–91. doi:10.1101/gad.269894.115. PMC 4604339free to read. PMID 26443844. 
  8. ^ a b Pilegaard H, Saltin B, Neufer PD (February 2003). "Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle". J. Physiol. (Lond.). 546 (Pt 3): 851–8. doi:10.1113/jphysiol.2002.034850. PMC 2342594free to read. PMID 12563009. 
  9. ^ "Entrez Gene: PPARGC1A peroxisome proliferator-activated receptor gamma, coactivator 1 alpha". 
  10. ^ Liang H, Ward WF (December 2006). "PGC-1alpha: a key regulator of energy metabolism". Adv Physiol Educ. 30 (4): 145–51. doi:10.1152/advan.00052.2006. PMID 17108241. 
  11. ^ Summermatter S, Santos G, Pérez-Schindler J, Handschin C (May 2013). "Skeletal muscle PGC-1α controls whole-body lactate homeostasis through estrogen-related receptor α-dependent activation of LDH B and repression of LDH A". Proc. Natl. Acad. Sci. U.S.A. 110 (21): 8738–43. doi:10.1073/pnas.1212976110. PMC 3666691free to read. PMID 23650363. 
  12. ^ Romanino K, Mazelin L, Albert V, Conjard-Duplany A, Lin S, Bentzinger CF, Handschin C, Puigserver P, Zorzato F, Schaeffer L, Gangloff YG, Rüegg MA (December 2011). "Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function". Proc. Natl. Acad. Sci. U.S.A. 108 (51): 20808–13. doi:10.1073/pnas.1111448109. PMC 3251091free to read. PMID 22143799. 
  13. ^ Summermatter S, Thurnheer R, Santos G, Mosca B, Baum O, Treves S, Hoppeler H, Zorzato F, Handschin C (January 2012). "Remodeling of calcium handling in skeletal muscle through PGC-1α: impact on force, fatigability, and fiber type". Am. J. Physiol., Cell Physiol. 302 (1): C88–99. doi:10.1152/ajpcell.00190.2011. PMID 21918181. 
  14. ^ Viatour P, Merville MP, Bours V, Chariot A (January 2005). "Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation". Trends Biochem. Sci. 30 (1): 43–52. doi:10.1016/j.tibs.2004.11.009. PMID 15653325. 
  15. ^ Harris CD, Ermak G, Davies KJ (November 2005). "Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product calcipressin 1 (or RCAN1) in disease". Cell. Mol. Life Sci. 62 (21): 2477–86. doi:10.1007/s00018-005-5085-4. PMID 16231093. 
  16. ^ Olesen J, Larsson S, Iversen N, Yousafzai S, Hellsten Y, Pilegaard H (2012). Calbet, Jose A. L, ed. "Skeletal muscle PGC-1α is required for maintaining an acute LPS-induced TNFα response". PLoS ONE. 7 (2): e32222. doi:10.1371/journal.pone.0032222. PMC 3288087free to read. PMID 22384185. 
  17. ^ Brault JJ, Jespersen JG, Goldberg AL (June 2010). "Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy". J. Biol. Chem. 285 (25): 19460–71. doi:10.1074/jbc.M110.113092. PMC 2885225free to read. PMID 20404331. 
  18. ^ Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR (October 2010). "PGC-1{alpha}, A Potential Therapeutic Target for Early Intervention in Parkinson's Disease". Sci Transl Med. 2 (52): 52ra73. doi:10.1126/scitranslmed.3001059. PMC 3129986free to read. PMID 20926834. 
  19. ^ Soyal SM, Felder TK, Auer S, Hahne P, Oberkofler H, Witting A, Paulmichl M, Landwehrmeyer GB, Weydt P, Patsch W. A greatly extended PPARGC1A genomic locus encodes several new brain specific isoforms and influences Huntington Disease age-of-onset. Hum Mol Genet. 2012;21:3461-3473.
  20. ^ Eschbach J*, Schwalenstöcker B*, Soyal S*, Bayer Wiesner D, Akimoto C, Nilsson A-C, Birve A, Meyer T, Dupuis is a-L, Danzer K, Andersen PM, Witting A, Ludolph AC, Patsch W, Weydt P. PGC-1 male-specific disease modifier of human and experimental amyotrophic lateral sclerosis. Hum Mol Genet 2013;22:3477-3484.
  21. ^ Crane JD, Ogborn DI, Cupido C, Melov S, Hubbard A, Bourgeois JM, Tarnopolsky MA (February 2012). "Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage". Sci Transl Med. 4 (119): 119ra13. doi:10.1126/scitranslmed.3002882. PMID 22301554. 
  22. ^ Brown, Eryn (2012-02-01). "Study works out kinks in understanding of massage". Los Angeles Times. 
  23. ^ "Videos | The Buck Institute for Research on Aging". Buckinstitute.org. Retrieved 2013-10-11. 
  24. ^ Yakeu G, Butcher L, Isa S, Webb R, Roberts AW, Thomas AW, Backx K, James PE, Morris K (October 2010). "Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes: roles of PPARγ and Th2 cytokines". Atherosclerosis. 212 (2): 668–73. doi:10.1016/j.atherosclerosis.2010.07.002. PMID 20723894. 
  25. ^ Chan MM, Adapala N, Chen C (2012). "Peroxisome Proliferator-Activated Receptor-γ-Mediated Polarization of Macrophages in Leishmania Infection". PPAR Res. 2012: 796235. doi:10.1155/2012/796235. PMC 3289877free to read. PMID 22448168. 
  26. ^ Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR, Wagner RA, Greaves DR, Murray PJ, Chawla A (July 2006). "Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation". Cell Metab. 4 (1): 13–24. doi:10.1016/j.cmet.2006.05.011. PMC 1904486free to read. PMID 16814729. 
  27. ^ http://www.cell.com/cell-metabolism/retrieve/pii/S155041311300497X
  28. ^ a b Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM (November 1999). "Activation of PPARgamma coactivator-1 through transcription factor docking". Science. 286 (5443): 1368–71. doi:10.1126/science.286.5443.1368. PMID 10558993. 
  29. ^ Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA (January 2004). "Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR". Genes Dev. 18 (2): 157–69. doi:10.1101/gad.1138104. PMC 324422free to read. PMID 14729567. 
  30. ^ Olson BL, Hock MB, Ekholm-Reed S, Wohlschlegel JA, Dev KK, Kralli A, Reed SI (January 2008). "SCFCdc4 acts antagonistically to the PGC-1α transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis". Genes Dev. 22 (2): 252–64. doi:10.1101/gad.1624208. PMC 2192758free to read. PMID 18198341. 
  31. ^ a b c d e Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG (November 2003). "Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha". Mol. Cell. 12 (5): 1137–49. doi:10.1016/S1097-2765(03)00391-5. PMID 14636573. 
  32. ^ Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999). "Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1". Cell. 98 (1): 115–24. doi:10.1016/S0092-8674(00)80611-X. PMID 10412986. 
  33. ^ Delerive P, Wu Y, Burris TP, Chin WW, Suen CS (February 2002). "PGC-1 functions as a transcriptional coactivator for the retinoid X receptors". J. Biol. Chem. 277 (6): 3913–7. doi:10.1074/jbc.M109409200. PMID 11714715. 
  34. ^ Wu Y, Delerive P, Chin WW, Burris TP (March 2002). "Requirement of helix 1 and the AF-2 domain of the thyroid hormone receptor for coactivation by PGC-1". J. Biol. Chem. 277 (11): 8898–905. doi:10.1074/jbc.M110761200. PMID 11751919. 

Further reading[edit]

  • Knutti D, Kralli A (2001). "PGC-1, a versatile coactivator". Trends Endocrinol. Metab. 12 (8): 360–5. doi:10.1016/S1043-2760(01)00457-X. PMID 11551810. 
  • Puigserver P, Spiegelman BM (2003). "Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator". Endocr. Rev. 24 (1): 78–90. doi:10.1210/er.2002-0012. PMID 12588810. 
  • Soyal S, Krempler F, Oberkofler H, Patsch W (2007). "PGC-1alpha: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes". Diabetologia. 49 (7): 1477–88. doi:10.1007/s00125-006-0268-6. PMID 16752166. 
  • Handschin C, Spiegelman BM (2007). "Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism". Endocr. Rev. 27 (7): 728–35. doi:10.1210/er.2006-0037. PMID 17018837. 
  • Liang H, Ward WF (2006). "PGC-1alpha: a key regulator of energy metabolism". Advances in physiology education. 30 (4): 145–51. doi:10.1152/advan.00052.2006. PMID 17108241. 

External links[edit]

This article incorporates text from the United States National Library of Medicine, which is in the public domain.