PSMB6

From Wikipedia, the free encyclopedia
Jump to: navigation, search
PSMB6
Protein PSMB6 PDB 1iru.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases PSMB6, DELTA, LMPY, Y, proteasome subunit beta 6
External IDs MGI: 104880 HomoloGene: 2092 GeneCards: PSMB6
Gene location (Human)
Chromosome 17 (human)
Chr. Chromosome 17 (human)[1]
Chromosome 17 (human)
Genomic location for PSMB6
Genomic location for PSMB6
Band 17p13.2 Start 4,796,144 bp[1]
End 4,798,503 bp[1]
RNA expression pattern
PBB GE PSMB6 208827 at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002798
NM_001270481

NM_008946

RefSeq (protein)

NP_001257410
NP_002789

NP_032972

Location (UCSC) Chr 17: 4.8 – 4.8 Mb Chr 17: 70.53 – 70.53 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Proteasome subunit beta type-6 also known as 20S proteasome subunit beta-1 (based on systematic nomenclature) is a protein that in humans is encoded by the PSMB6 gene.[5][6][7]

This protein is one of the 17 essential subunits (alpha subunits 1-7, constitutive beta subunits 1-7, and inducible subunits including beta1i, beta2i, beta5i) that contributes to the complete assembly of 20S proteasome complex. In particular, proteasome subunit beta type-6, along with other beta subunits, assemble into two heptameric rings and subsequently a proteolytic chamber for substrate degradation. This protein contains "Caspase-like" activity and is capable of cleaving after acidic residues of peptide.[8] The eukaryotic proteasome recognized degradable proteins, including damaged proteins for protein quality control purpose or key regulatory protein components for dynamic biological processes. An essential function of a modified proteasome, the immunoproteasome, is the processing of class I MHC peptides.

Structure[edit]

Gene[edit]

The human gene contains 6 exons and is located at chromosome band 17p13.

Protein[edit]

The human protein proteasome subunit beta type-6 is 22 kDa in size and composed of 205 amino acids. The calculated theoretical pI of this protein is 4.91.

The 20S proteasome subunit beta-1 (systematic nomenclature) is originally expressed as a precursor with 239 amino acids. The fragment of 34 amino acids at peptide N-terminal is essential for proper protein folding and subsequent complex assembly. At the end-stage of complex assembly, the N-terminal fragment of beta1 subunit is cleaved, forming the mature beta1 subunit of 20S complex.[9]

Complex assembly[edit]

The proteasome is a multicatalytic proteinase complex with a highly ordered 20S core structure. This barrel-shaped core structure is composed of 4 axially stacked rings of 28 non-identical subunits: the two end rings are each formed by 7 alpha subunits, and the two central rings are each formed by 7 beta subunits. Three beta subunits (beta1, beta2, beta5) each contains a proteolytic active site and has distinct substrate preferences. Proteasomes are distributed throughout eukaryotic cells at a high concentration and cleave peptides in an ATP/ubiquitin-dependent process in a non-lysosomal pathway.[10][11]

Function[edit]

The gene PSMB6 encodes a member of the proteasome B-type family, also known as the T1B family, that is a 20S core beta subunit in the proteasome. This catalytic subunit is not present in the immunoproteasome and is replaced by catalytic inducible subunit beta1i (proteasome beta 9 subunit).[7]

The proteasomes are an pivotal component for the Ubiquitin-Proteasome System (UPS)[12] and corresponding cellular Protein Quality Control (PQC). Compromised proteasome complex assembly leads to reduced proteolytic activities and accumulation of damaged or misfolded protein species. Such protein accumulation has become phenotypic characteristics of neurodegenerative diseases,[13][14] cardiovascular diseases,[15][16][17] and systemic DNA damage responses.[18]

The function of this protein is supported by its tertiary structure and its interaction with associating partners. As one of 28 subunits of 20S proteasome, protein proteasome subunit beta type-2 contributes to form a proteolytic environment for substrate degradation. Evidences of the crystal structures of isolated 20S proteasome complex demonstrate that the two rings of beta subunits form a proteolytic chamber and maintain all their active sites of proteolysis within the chamber.[11] Concomitantly, the rings of alpha subunits form the entrance for substrates entering the proteolytic chamber. In an inactivated 20S proteasome complex, the gate into the internal proteolytic chamber are guarded by the N-terminal tails of specific alpha-subunit. This unique structure design prevents random encounter between proteolytic active sites and protein substrate, which makes protein degradation a well-regulated process.[19][20] 20S proteasome complex, by itself, is usually functionally inactive. The proteolytic capacity of 20S core particle (CP) can be activated when CP associates with one or two regulatory particles (RP) on one or both side of alpha rings. These regulatory particles include 19S proteasome complexes, 11S proteasome complex, etc. Following the CP-RP association, the confirmation of certain alpha subunits will change and consequently cause the opening of substrate entrance gate. Besides RPs, the 20S proteasomes can also be effectively activated by other mild chemical treatments, such as exposure to low levels of sodium dodecylsulfate (SDS) or NP-14.[20][21]

Clinical significance[edit]

The Proteasome and its subunits are of clinical significance for at least two reasons: (1) a compromised complex assembly or a dysfunctional proteasome can be associated with the underlying pathophysiology of specific diseases, and (2) they can be exploited as drug targets for therapeutic interventions. More recently, more effort has also been made to consider the proteasome for the development of novel diagnostic markers and strategies. An improved and comprehensive understanding of the pathophysiology of the proteasome should lead to important clinical applications in the future.

The proteasomes form a pivotal component for the Ubiquitin-Proteasome System (UPS) [12] and corresponding cellular Protein Quality Control (PQC). Protein ubiquitination and subsequent proteolysis and degradation by the proteasome are important mechanisms in the regulation of the cell cycle, cell growth and differentiation, gene transcription, signal transduction and apoptosis.[22] Subsequently, a compromised proteasome complex assembly and function lead to reduced proteolytic activities and the accumulation of damaged or misfolded protein species. Such protein accumulation may contribute to the pathogenesis and phenotypic characteristics in neurodegenerative diseases,[13][14] cardiovascular diseases,[15][16][17] inflammatory responses and autoimmune diseases,[23] and systemic DNA damage responses leading to malignancies.[18]

Several experimental and clinical studies have indicated that aberrations and deregulations of the UPS contribute to the pathogenesis of several neurodegenerative and myodegenerative disorders, including Alzheimer's disease,[24] Parkinson's disease[25] and Pick's disease,[26] Amyotrophic lateral sclerosis (ALS),[26] Huntington's disease,[25] Creutzfeldt–Jakob disease,[27] and motor neuron diseases, polyglutamine (PolyQ) diseases, Muscular dystrophies[28] and several rare forms of neurodegenerative diseases associated with dementia.[29] As part of the Ubiquitin-Proteasome System (UPS), the proteasome maintains cardiac protein homeostasis and thus plays a significant role in cardiac Ischemic injury,[30] ventricular hypertrophy[31] and Heart failure.[32] Additionally, evidence is accumulating that the UPS plays an essential role in malignant transformation. UPS proteolysis plays a major role in responses of cancer cells to stimulatory signals that are critical for the development of cancer. Accordingly, gene expression by degradation of transcription factors, such as p53, c-Jun, c-Fos, NF-κB, c-Myc, HIF-1α, MATα2, STAT3, sterol-regulated element-binding proteins and androgen receptors are all controlled by the UPS and thus involved in the development of various malignancies.[33] Moreover, the UPS regulates the degradation of tumor suppressor gene products such as adenomatous polyposis coli (APC) in colorectal cancer, retinoblastoma (Rb). and von Hippel-Lindau tumor suppressor (VHL), as well as a number of proto-oncogenes (Raf, Myc, Myb, Rel, Src, Mos, Abl). The UPS is also involved in the regulation of inflammatory responses. This activity is usually attributed to the role of proteasomes in the activation of NF-κB which further regulates the expression of pro inflammatory cytokines such as TNF-α, IL-β, IL-8, adhesion molecules (ICAM-1, VCAM-1, P selectine) and prostaglandins and nitric oxide (NO).[23] Additionally, the UPS also plays a role in inflammatory responses as regulators of leukocyte proliferation, mainly through proteolysis of cyclines and the degradation of CDK inhibitors.[34] Lastly, autoimmune disease patients with SLE, Sjogren's syndrome and rheumatoid arthritis (RA) predominantly exhibit circulating proteasomes which can be applied as clinical biomarkers.[35]

As aforementioned, the proteasome subunit beta type-6, also known as 20S proteasome subunit beta-1 is a protein that is encoded by the PSMB6 gene in humans. A clinically important role of the PSMB6 protein has been mainly found in malignancies. For instance, pharmacological drug therapy with Periplocin in the treatment of rheumatoid arthritis, is also found to inhibit lung cancer in both in-vivo and in-vitro experimental models. Accordingly, the protein profile changes of human lung cancer cell lines A549 in response to periplocin treatment were investigated using proteomics approaches (2-DE combined] with MS/MS) in conduction with Western blot analysis to verify the changed proteins.[36] Using immunoblot analysis followed by STRING bioinformatics analysis, it was revealed that Periplocin can inhibited growth of lung cancer by down-regulating proteins, such as ATP5A1, EIF5A, ALDH1 and PSMB6. Thus, the proteasome subunit beta type-6 (PSMB6) appears to have a significant role in molecular mechanisms underlying the anti-cancer effects of periplocin on lung cancer cells.[36] A proteomic study, analyzing differentially expressed UPS proteins in a rat model of chronic hypoxic pulmonary hypertension which is characterized by sustained elevation of pulmonary vascular resistance that results in vascular remodeling, revealed a significant association with the PSMB6 protein.[37] Chronic hypoxia up-regulated the proteasome activity and the proliferation of pulmonary artery smooth muscle cells, which may be related to an increased PSMB6 expression and the subsequently enhanced functional catalytic sites of the proteasome. Thus, there may be an essential role of the proteasome during chronic hypoxic pulmonary hypertension.[38]

References[edit]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000142507 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000018286 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". 
  4. ^ "Mouse PubMed Reference:". 
  5. ^ Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka H, Nothwang HG, Noda C, Tanaka K, Ichihara A (Aug 1994). "cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y". Science. 265 (5176): 1231–4. Bibcode:1994Sci...265.1231A. doi:10.1126/science.8066462. PMID 8066462. 
  6. ^ DeMartino GN, Orth K, McCullough ML, Lee LW, Munn TZ, Moomaw CR, Dawson PA, Slaughter CA (Aug 1991). "The primary structures of four subunits of the human, high-molecular-weight proteinase, macropain (proteasome), are distinct but homologous". Biochimica et Biophysica Acta. 1079 (1): 29–38. doi:10.1016/0167-4838(91)90020-Z. PMID 1888762. 
  7. ^ a b "Entrez Gene: PSMB6 proteasome (prosome, macropain) subunit, beta type, 6". 
  8. ^ Coux O, Tanaka K, Goldberg AL (Nov 1996). "Structure and functions of the 20S and 26S proteasomes". Annual Review of Biochemistry. 65: 801–47. doi:10.1146/annurev.bi.65.070196.004101. PMID 8811196. 
  9. ^ Yang Y, Früh K, Ahn K, Peterson PA (Nov 1995). "In vivo assembly of the proteasomal complexes, implications for antigen processing". The Journal of Biological Chemistry. 270 (46): 27687–94. doi:10.1074/jbc.270.46.27687. PMID 7499235. 
  10. ^ Coux O, Tanaka K, Goldberg AL (1996). "Structure and functions of the 20S and 26S proteasomes". Annual Review of Biochemistry. 65: 801–47. doi:10.1146/annurev.bi.65.070196.004101. PMID 8811196. 
  11. ^ a b Tomko RJ, Hochstrasser M (2013). "Molecular architecture and assembly of the eukaryotic proteasome". Annual Review of Biochemistry. 82: 415–45. doi:10.1146/annurev-biochem-060410-150257. PMC 3827779Freely accessible. PMID 23495936. 
  12. ^ a b Kleiger G, Mayor T (Jun 2014). "Perilous journey: a tour of the ubiquitin-proteasome system". Trends in Cell Biology. 24 (6): 352–9. doi:10.1016/j.tcb.2013.12.003. PMC 4037451Freely accessible. PMID 24457024. 
  13. ^ a b Sulistio YA, Heese K (Jan 2015). "The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease". Molecular Neurobiology. 53: 905–31. doi:10.1007/s12035-014-9063-4. PMID 25561438. 
  14. ^ a b Ortega Z, Lucas JJ (2014). "Ubiquitin-proteasome system involvement in Huntington's disease". Frontiers in Molecular Neuroscience. 7: 77. doi:10.3389/fnmol.2014.00077. PMC 4179678Freely accessible. PMID 25324717. 
  15. ^ a b Sandri M, Robbins J (Jun 2014). "Proteotoxicity: an underappreciated pathology in cardiac disease". Journal of Molecular and Cellular Cardiology. 71: 3–10. doi:10.1016/j.yjmcc.2013.12.015. PMC 4011959Freely accessible. PMID 24380730. 
  16. ^ a b Drews O, Taegtmeyer H (Dec 2014). "Targeting the ubiquitin-proteasome system in heart disease: the basis for new therapeutic strategies". Antioxidants & Redox Signaling. 21 (17): 2322–43. doi:10.1089/ars.2013.5823. PMC 4241867Freely accessible. PMID 25133688. 
  17. ^ a b Wang ZV, Hill JA (Feb 2015). "Protein quality control and metabolism: bidirectional control in the heart". Cell Metabolism. 21 (2): 215–26. doi:10.1016/j.cmet.2015.01.016. PMC 4317573Freely accessible. PMID 25651176. 
  18. ^ a b Ermolaeva MA, Dakhovnik A, Schumacher B (Jan 2015). "Quality control mechanisms in cellular and systemic DNA damage responses". Ageing Research Reviews. 23 (Pt A): 3–11. doi:10.1016/j.arr.2014.12.009. PMC 4886828Freely accessible. PMID 25560147. 
  19. ^ Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (Apr 1997). "Structure of 20S proteasome from yeast at 2.4 A resolution". Nature. 386 (6624): 463–71. Bibcode:1997Natur.386..463G. doi:10.1038/386463a0. PMID 9087403. 
  20. ^ a b Groll M, Bajorek M, Köhler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (Nov 2000). "A gated channel into the proteasome core particle". Nature Structural Biology. 7 (11): 1062–7. doi:10.1038/80992. PMID 11062564. 
  21. ^ Zong C, Gomes AV, Drews O, Li X, Young GW, Berhane B, Qiao X, French SW, Bardag-Gorce F, Ping P (Aug 2006). "Regulation of murine cardiac 20S proteasomes: role of associating partners". Circulation Research. 99 (4): 372–80. doi:10.1161/01.RES.0000237389.40000.02. PMID 16857963. 
  22. ^ Goldberg AL, Stein R, Adams J (Aug 1995). "New insights into proteasome function: from archaebacteria to drug development". Chemistry & Biology. 2 (8): 503–8. doi:10.1016/1074-5521(95)90182-5. PMID 9383453. 
  23. ^ a b Karin M, Delhase M (Feb 2000). "The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling". Seminars in Immunology. 12 (1): 85–98. doi:10.1006/smim.2000.0210. PMID 10723801. 
  24. ^ Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P (Jul 2000). "Role of the proteasome in Alzheimer's disease". Biochimica et Biophysica Acta. 1502 (1): 133–8. doi:10.1016/s0925-4439(00)00039-9. PMID 10899438. 
  25. ^ a b Chung KK, Dawson VL, Dawson TM (Nov 2001). "The role of the ubiquitin-proteasomal pathway in Parkinson's disease and other neurodegenerative disorders". Trends in Neurosciences. 24 (11 Suppl): S7–14. doi:10.1016/s0166-2236(00)01998-6. PMID 11881748. 
  26. ^ a b Ikeda K, Akiyama H, Arai T, Ueno H, Tsuchiya K, Kosaka K (Jul 2002). "Morphometrical reappraisal of motor neuron system of Pick's disease and amyotrophic lateral sclerosis with dementia". Acta Neuropathologica. 104 (1): 21–8. doi:10.1007/s00401-001-0513-5. PMID 12070660. 
  27. ^ Manaka H, Kato T, Kurita K, Katagiri T, Shikama Y, Kujirai K, Kawanami T, Suzuki Y, Nihei K, Sasaki H (May 1992). "Marked increase in cerebrospinal fluid ubiquitin in Creutzfeldt–Jakob disease". Neuroscience Letters. 139 (1): 47–9. doi:10.1016/0304-3940(92)90854-z. PMID 1328965. 
  28. ^ Mathews KD, Moore SA (Jan 2003). "Limb-girdle muscular dystrophy". Current Neurology and Neuroscience Reports. 3 (1): 78–85. doi:10.1007/s11910-003-0042-9. PMID 12507416. 
  29. ^ Mayer RJ (Mar 2003). "From neurodegeneration to neurohomeostasis: the role of ubiquitin". Drug News & Perspectives. 16 (2): 103–8. doi:10.1358/dnp.2003.16.2.829327. PMID 12792671. 
  30. ^ Calise J, Powell SR (Feb 2013). "The ubiquitin proteasome system and myocardial ischemia". American Journal of Physiology. Heart and Circulatory Physiology. 304 (3): H337–49. doi:10.1152/ajpheart.00604.2012. PMC 3774499Freely accessible. PMID 23220331. 
  31. ^ Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (Mar 2010). "Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies". Circulation. 121 (8): 997–1004. doi:10.1161/CIRCULATIONAHA.109.904557. PMC 2857348Freely accessible. PMID 20159828. 
  32. ^ Powell SR (Jul 2006). "The ubiquitin-proteasome system in cardiac physiology and pathology". American Journal of Physiology. Heart and Circulatory Physiology. 291 (1): H1–H19. doi:10.1152/ajpheart.00062.2006. PMID 16501026. 
  33. ^ Adams J (Apr 2003). "Potential for proteasome inhibition in the treatment of cancer". Drug Discovery Today. 8 (7): 307–15. doi:10.1016/s1359-6446(03)02647-3. PMID 12654543. 
  34. ^ Ben-Neriah Y (Jan 2002). "Regulatory functions of ubiquitination in the immune system". Nature Immunology. 3 (1): 20–6. doi:10.1038/ni0102-20. PMID 11753406. 
  35. ^ Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Dörner T, Burmester GR, Kloetzel PM, Feist E (Oct 2002). "Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases". The Journal of Rheumatology. 29 (10): 2045–52. PMID 12375310. 
  36. ^ a b Lu Z, Song Q, Yang J, Zhao X, Zhang X, Yang P, Kang J (2014). "Comparative proteomic analysis of anti-cancer mechanism by periplocin treatment in lung cancer cells". Cellular Physiology and Biochemistry. 33 (3): 859–68. doi:10.1159/000358658. PMID 24685647. 
  37. ^ Wang J, Xu L, Yun X, Yang K, Liao D, Tian L, Jiang H, Lu W (2013). "Proteomic analysis reveals that proteasome subunit beta 6 is involved in hypoxia-induced pulmonary vascular remodeling in rats". PLOS ONE. 8 (7): e67942. Bibcode:2013PLoSO...867942W. doi:10.1371/journal.pone.0067942. PMC 3700908Freely accessible. PMID 23844134. 
  38. ^ Wang J, Xu L, Yun X, Yang K, Liao D, Tian L, Jiang H, Lu W (2013). "Proteomic analysis reveals that proteasome subunit beta 6 is involved in hypoxia-induced pulmonary vascular remodeling in rats". PLOS ONE. 8 (7): e67942. Bibcode:2013PLoSO...867942W. doi:10.1371/journal.pone.0067942. PMC 3700908Freely accessible. PMID 23844134. 

Further reading[edit]