Pearson symbol

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Pearson symbol, or Pearson notation, is used in crystallography as a means of describing a crystal structure, and was originated by W.B. Pearson.[1] The symbol is made up of two letters followed by a number. For example:

  • Diamond structure, cF8
  • Rutile structure, tP6

The two (italicised) letters specify the Bravais lattice. The lower case letter specifies the crystal system, and the upper case letter the lattice type. The figure gives the number of the atoms in the unit cell. IUPAC (2005) [2]

Crystal system
a triclinic = anorthic
m monoclinic
o orthorhombic
t tetragonal
h hexagonal and trigonal
c cubic
Lattice type + number of translation equivalent points
P Primitive 1
S,A,B,C One side/face centred 2
I Body centred (from innenzentriert (German))[3] 2
R Rhombohedral centring (see below) 3
F All faces centred 4

The letters A, B and C were formerly used instead of S. When the centred face cuts the X-axis, the Bravais lattice is called A-centred. In analogy, when the centred face cuts the Y- or Z-axis, we have B- or C-centring, respectively.[3]

The fourteen possible Bravais lattices are identified by the first two letters:

Crystal system Lattice symbol Pearson symbol letters
Triclinic P aP
Monoclinic P mP
S mS
Orthorhombic P oP
S oS
F oF
I oI
Tetragonal P tP
I tI
Hexagonal (and trigonal) P hP
R hR
Cubic P cP
F cF
I cI

Pearson symbol and space group[edit]

The Pearson symbol does not uniquely identify the space group of a crystal structure, for example both the NaCl structure, (space group Fm3m) and diamond (space group Fd3m) have the same Pearson symbol cF8.

Confusion also arises in the rhombohedral lattice which is alternatively described in a centred hexagonal (a=b, c, α=β=90º, γ=120º) or primitive rhombohedral (a=b=c, α=β=γ) setting. The more commonly used hexagonal setting has 3 translation equivalent points per unit cell. The Pearson symbol refers to the hexagonal setting in its letter code (hR) but the following figure gives the number of translation equivalent points in the primitive rhombohedral setting. Examples: hR1 and hR2 are used to designate the Hg and Bi structure, respectively.


The Pearson symbol should only be used to designate simple structures (elements, some binary compound) where the number of atoms per unit cell equals, ideally, the number of translation equivalent points.


  1. ^ W.B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys,Vol. 2, Pergamon Press, Oxford, 1967
  2. ^ Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005; IR-3.4.4, pp.49-51; IR-11.5, pp.241-242
  3. ^ a b page 124 in chapter 3. Crystallography: Internal order and symmetry in Cornelius Klein & Cornelius S. Hurlbut, Jr.: Manual of Mineralogy, 21st edition, 1993, John Wiley & Sons, Inc., ISBN 0-471-59955-7

Further reading[edit]