Pentakis dodecahedron

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Pentakis dodecahedron
Pentakisdodecahedron.jpg
(Click here for rotating model)
Type Catalan solid
Coxeter diagram CDel node f1.pngCDel 3.pngCDel node f1.pngCDel 5.pngCDel node.png
Conway notation kD
Face type V5.6.6
DU25 facets.png

isosceles triangle
Faces 60
Edges 90
Vertices 32
Vertices by type 20{6}+12{5}
Symmetry group Ih, H3, [5,3], (*532)
Rotation group I, [5,3]+, (532)
Dihedral angle 156° 43' 7"
 \arccos ( -\frac{80 + 9\sqrt{5}}{109} )
Properties convex, face-transitive
Truncated icosahedron.png
Truncated icosahedron
(dual polyhedron)
Pentakis dodecahedron Net
Net

In geometry, a pentakis dodecahedron or kisdodecahedron a dodecahedron with a pentagonal pyramid covering each face; that is, it is the Kleetope of the dodecahedron. This interpretation is expressed in its name. [1] There are in fact several topologically equivalent but geometrically distinct kinds of pentakis dodecahedron, depending on the height of the pentagonal pyramids. These include:

  • As the heights of the pentagonal pyramids are raised, at a certain point adjoining pairs of triangular faces merge to become rhombi, and the shape becomes a rhombic triacontahedron.
  • As the height is raised further, the shape becomes non-convex. In particular, an equilateral or deltahedron version of the pentakis dodecahedron, which has sixty equilateral triangular faces as shown in the adjoining figure, is slightly non-convex due to its taller pyramids (note, for example, the negative dihedral angle at the upper left of the figure).
A non-convex variant with equilateral triangular faces.

Other more non-convex geometric variants include:

If one affixes pentagrammic pyramids into Wenninger's third stellation of icosahedron one obtains the great icosahedron.

Chemistry[edit]

C60-cpk.png
The pentakis dodecahedron in a model of buckminsterfullerene: each surface segment represents a carbon atom. Equivalently, a truncated icosahedron is a model of buckminsterfullerene, with each vertex representing a carbon atom.

Biology[edit]

The pentakis dodecahedron is also a model of some icosahedrally symmetric viruses, such as Adeno-associated virus. These have 60 symmetry related capsid proteins, which combine to make the 60 symmetrical faces of a pentakis dodecahedron.

Orthogonal projections[edit]

The pentakis dodecahedron has three symmetry positions, two on vertices, and one on a midedge:

Orthogonal projections
Projective
symmetry
[2] [6] [10]
Image Dual dodecahedron t01 e66.png Dual dodecahedron t01 A2.png Dual dodecahedron t01 H3.png
Dual
image
Dodecahedron t12 e66.png Icosahedron t01 A2.png Icosahedron t01 H3.png

Related polyhedra[edit]

Spherical pentakis dodecahedron
Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
Uniform polyhedron-53-t0.png Uniform polyhedron-53-t01.png Uniform polyhedron-53-t1.png Uniform polyhedron-53-t12.png Uniform polyhedron-53-t2.png Uniform polyhedron-53-t02.png Uniform polyhedron-53-t012.png Uniform polyhedron-53-s012.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node 1.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 3.pngCDel node h.png
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
Icosahedron.svg Triakisicosahedron.jpg Rhombictriacontahedron.svg Pentakisdodecahedron.jpg Dodecahedron.svg Deltoidalhexecontahedron.jpg Disdyakistriacontahedron.jpg Pentagonalhexecontahedronccw.jpg
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5
*n32 symmetry mutation of truncated tilings: n.6.6
Sym.
*n42
[n,3]
Spherical Euclid. Compact hyperb. Parac. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
[12i,3] [9i,3] [6i,3]
Truncated
figures
Hexagonal dihedron.png Uniform tiling 332-t12.png Uniform tiling 432-t12.png Uniform tiling 532-t12.png Uniform tiling 63-t12.png H2 tiling 237-6.png H2 tiling 238-6.png H2 tiling 23i-6.png H2 tiling 23j12-6.png H2 tiling 23j9-6.png H2 tiling 23j-6.png
Config. 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 ∞.6.6 12i.6.6 9i.6.6 6i.6.6
n-kis
figures
Hexagonal Hosohedron.svg Spherical triakis tetrahedron.png Spherical tetrakis hexahedron.png Spherical pentakis dodecahedron.png Uniform tiling 63-t2.png Order3 heptakis heptagonal til.png H2checkers 334.png H2checkers 33i.png
Config. V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6 V8.6.6 V∞.6.6 V12i.6.6 V9i.6.6 V6i.6.6

Cultural references[edit]

References[edit]

  1. ^ Conway, Symmetries of things, p.284
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X.  (Section 3-9)
  • Sellars, Peter (2005). "Doctor Atomic Libretto". Boosey & Hawkes. We surround the plutonium core from thirty two points spaced equally around its surface, the thirty-two points are the centers of the twenty triangular faces of an icosahedron interwoven with the twelve pentagonal faces of a dodecahedron. 
  • Wenninger, Magnus (1983). Dual Models. Cambridge University Press. ISBN 978-0-521-54325-5. MR 730208.  (The thirteen semiregular convex polyhedra and their duals, Page 18, Pentakisdodecahedron)
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 [2] (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 284, Pentakis dodecahedron )

External links[edit]