Photographic lighting

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
The model was lit on the left with a strobe. The light was warmed with an orange gel to match the sunset.

Photographic lighting refers to how a light source, artificial or natural, illuminates the scene or subject that is photographed. Photographers can manipulate the positioning and the quality of a light source to create visual effects, potentially changing aspects of the photograph such as clarity, tone and saturation often to create an accurate rendition of the scene.[1]

Lighting determines exposure and can be used to create effects such as low-key and high-key - the contrast between darker and lighter elements in a scene.[2] Lighting is also important for monochrome photography, where there is no color information and exclusively includes the interplay of highlights and shadows.

Main sources[edit]

The main sources of light for photography are:

Basic lighting patterns[edit]

  • Loop lighting produces a small shadow of the subject's nose on the shadow side of the face.[5]
  • Butterfly lighting, named for the butterfly-shaped shadow under the nose, the butterfly lighting pattern is created when the light is above and in line with the camera.
  • Split lighting, where the main light is placed off to the side of the subject at about 90 degrees and positioned at face height or slightly above. The subject looks straight on at the camera.
  • Rembrandt lighting, which entails a contrast of dramatic lighting coming from the top and the side, thus giving specific light spot on the other cheek.

Perceptual cause and effect[edit]

Lighting creates the 2D pattern of contrast the brain interprets to recognize 3D objects in photographs. In an in-person viewing experience the brain relies on stereoscopic vision, parallax, shifting focal in addition to the clues created by the highlight and shadow patterns the light on the object creates.[4] When viewing a photo the brain tries to match the patterns of contrast and color it sees to those other sensory memories.[3]

The baseline for what seems "normal" in lighting is the direction and character of natural and artificial sources and the context provided by other clues. In the picture above, the photographer added a warming gel on the flash of the woman standing in a field in late afternoon light. The viewer knows the time of day from the angle of the shadows and neutral color balance would have seemed odd in that context. But similarly, the image of the woman if masked out and put on a plain white or neutral gray background would seem abnormally yellow.

While the goal in photographs is not to create an impression of normality, knowing what the audience normally expects to see required to pull off a lighting strategy that fools the brain.[6] Light direction relative to the camera can make a round ball appear to be a flat disk or a sphere. The position of highlights and direction and length of shadows will provide other clues to shape and outdoors the time of day. The tone of the shadows on an object or provide contextual clues about the time of day or environment and by inference based on personal experience the mood of the person.

A skilled photographer can manipulate how a viewer is likely to react to the content of a photo by manipulating the lighting.[6] When outdoors that can require changing location, waiting for the ideal time of day or in some cases the ideal time of year for the lighting to create the desired impression in the photo or manipulating the natural lighting by using reflectors or flash. In a studio setting, there is no limit to options for lighting objects to either make them look "seen by eye" normal or surreal as the goals for the photograph require. But more often than not the reaction on the part of the view will be from the baseline of whether the lighting seems normal/natural or not compared to other clues. Mistakes less-skilled photographer often make when mixing flash and natural lighting is not matching with the flash the highlight and shadow clues seen in the ambient lit background.[6] If the background is illuminated by the setting sun but the face in the foreground appears to have been photographed at noon it will not seem normal because the clues don't match.

The natural light baseline[edit]

The sun hitting the front of objects facing the camera acts as "key" light creating highlights and casting shadows.[3] Detail in shadows can be seen because the sunlight reflects off water vapor and dust the atmosphere creating omni-directional "fill". In open shade, 3D objects will also usually cast shadows because the downward vector of skylight is usually stronger than the sideways vectors illuminating the sides. When a photographer puts the sun behind an object its role in the lighting strategy changes from modeling the front of the object to one of defining its outline and creating the impression of physical separation and 3D space a frontally illuminated scene lacks. To differentiate that role from that of "key" modeling when a modeling source moves behind the object it is typically called a "rim" or "accent" light. In portrait lighting, it also called a "hair" light because it is used to create the appearance of physical separation between the subject's head and background. In natural lighting, the tone of the background is influenced by its reflective qualities and whether it is illuminated by the sun directly or skylight indirectly. So either the sun or sky, or a combination of both, can be the "background" lighting.

Midday bright sun could be too bright or give deep shadows. Overdevelopment degree depends on the film and a digital camera, as well as on their different dynamic features.[7] These characteristics are particular important for portrait photography where an extra flash is used to soften it because in many cases one need to balance the light on the face or other parts of the body and to soften contrasting shadows which are not generally expected to be.

Creating natural-looking artificial lighting[edit]

Artificial lighting strategies that seem most "natural" duplicate the same contrast pattern clues seen on 3D objects in various lighting conditions. A typical studio lighting configuration will consist of a fill source to control shadow tone, a single frontal key light to create the highlight modeling clues on the front of objects facing the camera over the shadows the fill illuminates, one or more rim/accent lights to create separation between foreground and background, and one or more background lights to control the tone of the background and separation between it and the foreground.

There are two significant differences between natural lighting and artificial sources. One is the character of the fill and the other is a more rapid fall-off in intensity. In nature skylight fill is omni-directional and usually brighter from above. That "wrap around" characteristic is difficult to duplicate with a directional artificial source. In a fixed studio location it is possible to bounce fill backwards off a white wall to flood the space with indirect reflected light similar to how the sun reflects off the atmosphere. Another way is to supplement a fill source from the direction of the camera with reflectors placed near the sides of the foreground subject.

The Inverse-Square Law describes the predictable way a point light source radiates and changes in intensity with distance. As the distance from a source doubles, the area of the footprint of light increases by a factor of four, the square ^2 of the distance.[6] Because the same number of photons are spread over four times the area when distance is doubled, the intensity at any point will be 1/ distance ^2 or 1/4 the strength. Photographic light sources are not point light sources so the law does not strictly apply but it explains why distance of artificial sources affects the character of lighting and lighting strategies in ways not seen in nature.[6]

According to the inverse-square law (intensity is inversely proportional to the distance squared) if the distance of a light source is changed in the following distance increments 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32, 45, 64 the intensity will decrease by one f/stop.[3] Notice each step changes by the square root of 2. In practical terms, it means if one face in a group portrait is 4 metres from the "key" light and another is 5.6 m away, the face further from the light will be one f/stop darker. In an outdoor portrait of a group of 200 people taken on an overcast day, the lighting of all the faces will be equal. The same group photographed indoors would be far more difficult to light evenly. The simplest strategy requiring the least flash equipment would be to get above the group with the camera, have them look up and bounce the lighting off the ceiling so, like an overcast day, every face is as equidistant as possible to the apparent source of the light.

Even something as basic as a head and shoulders portrait must take inverse-square fall-off into account by posing the front of the subject's face as close or closer to the "key" light than the shoulder or any other body part if the goal is to make the front of the face the most strongly contrasting focal point on a darker background. The position of the fill source relative to the face will also affect whether the nose shadow is the lightest (when fill is centered near camera) darkest (when fill is placed to the side) one on the face. The distance of the key and fill sources to the face will affect the rate at which the shadows transition from light to dark on the face.

Creating surreal lighting[edit]

Natural and surreal are just different sides of the same cause and effect coin. Understanding what makes lighting seem natural makes it easier to understand how to create other desired reactions. Natural light usually comes from above, so strategies which place the key light below the face will appear to be unusual or unnatural. The brain adapts color perception in a way that makes color balance seem neutral on white clothing and faces. The eyes also adapt to brightness as they scan and usually perceive a full range of detail in most environments. Lighting a scene with a tonal range or color cast which is out of context with what would typically be expected will cause the viewer to notice the environment and make other than normal assumptions about it. It is also possible to create the impression of environmental context where none is seen in the photograph, such as the look of a person standing under a streetlight at night by using a gridded flash attached to the ceiling of the studio with no fill source.

Three light setup[edit]

The three light setup is a common method used in photography. This method uses three separate positions that help the photographer illuminate the subject. It is formed by the key or main light, the fill light, and the backlight.[4]

Reflected light[edit]

This is when a flash is directed upwards or sidewards. The light is reflected from the wall or the ceiling and gives more nuances to the subject. The main advantage is that the subject does not face the light source.[8]


  1. ^ Team, Format (2020-09-21). "12 Types of Lighting in Photograph". Retrieved 2022-03-23.
  2. ^ "The Basics of Low-Key & High-Key Lighting | Adobe Australia". Retrieved 2022-03-23.
  3. ^ a b c d e f Hunter, Fil (9 January 2015). Light : science & magic : an introduction to photographic lighting. Biver, Steven,, Fuqua, Paul (Fifth ed.). Burlington, MA. ISBN 978-1-317-96357-8. OCLC 902744560.
  4. ^ a b c Harrington, Robert. Photographic Lighting. ISBN 978-1-78145-240-0. OCLC 927103792.
  5. ^ Sawalich, William. "Classic Portrait Light". Digital Photo Magazine. Retrieved 13 January 2021.{{cite web}}: CS1 maint: url-status (link)
  6. ^ a b c d e Stoppee, Brian. (2009). Stoppees' guide to photography & light : what digital photographers, illustrators, and creative professionals must know. Stoppee, Janet. Burlington, MA: Elsevier/Focal Press. ISBN 978-0-240-81063-8. OCLC 499056478.
  7. ^ Dam, Peter. "Guide to Exposure Compensation". Photography-Raw. Retrieved 13 January 2021.{{cite web}}: CS1 maint: url-status (link)
  8. ^ Yamamoto, Haruka. "Flash Technique. Creating a Pop Art-inspired Night Portrait". Snapshot. Retrieved 13 January 2021.{{cite web}}: CS1 maint: url-status (link)

External links[edit]