Planar algebra

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, planar algebras first appeared in the work of Vaughan Jones on the standard invariant of a II1 subfactor.[1] They also provide an appropriate algebraic framework for many knot invariants (in particular the Jones polynomial), and have been used in describing the properties of Khovanov homology with respect to tangle composition.[2][3] Any subfactor planar algebra provides a family of unitary representations of Thompson groups.[4] Any finite group (and quantum generalization) can be encoded as a planar algebra.[1]

Definition[edit]

The idea of the planar algebra is to be a diagrammatic axiomatization of the standard invariant.[1][5][6]

Planar tangle[edit]

A (shaded) planar tangle is the data of finitely many input disks, one output disk, non-intersecting strings giving an even number, say , intervals per disk and one -marked interval per disk.

Tangle.png

Here, the mark is shown as a -shape. On each input disk it is placed between two adjacent outgoing strings, and on the output disk it is placed between two adjacent incoming strings. A planar tangle is defined up to isotopy.

Composition[edit]

To compose two planar tangles, put the output disk of one into an input of the other, having as many intervals, same shading of marked intervals and such that the -marked intervals coincide. Finally we remove the coinciding circles. Note that two planar tangles can have zero, one or several possible compositions.

Composition.png

Planar operad[edit]

The planar operad is the set of all the planar tangles (up to isomorphism) with such compositions.

Planar algebra[edit]

A planar algebra is a representation of the planar operad; more precisely, it is a family of vector spaces , called -box spaces, on which acts the planar operad, i.e. for any tangle (with one output disk and input disks with and intervals respectively) there is a multilinear map

with according to the shading of the -marked intervals, and these maps (also called partition functions) respect the composition of tangle in such a way that all the diagrams as below commute.

PlanarDiagram.png

Examples[edit]

Planar tangles[edit]

The family of vector spaces generated by the planar tangles having intervals on their output disk and a white (or black) -marked interval, admits a planar algebra structure.

Temperley–Lieb[edit]

The Temperley-Lieb planar algebra is generated by the planar tangles without input disk; its -box space is generated by

TLJ3.png

Moreover, a closed string is replaced by a multiplication by .

DeltaMultiplication.png

Note that the dimension of is the Catalan number . This planar algebra encodes the notion of Temperley–Lieb algebra.

Hopf algebra[edit]

A semisimple and cosemisimple Hopf algebra over an algebraically closed field is encoded in a planar algebra defined by generators and relations, and "corresponds" (up to isomorphism) to a connected, irreducible, spherical, non degenerate planar algebra with non zero modulus and of depth two.[7]

Note that connected means (as for evaluable below), irreducible means , spherical is defined below, and non-degenerate means that the traces (defined below) are non-degenerate.

Subfactor planar algebra[edit]

Definition[edit]

A subfactor planar algebra is a planar -algebra which is:

(1) Finite-dimensional:
(2) Evaluable:
(3) Spherical:
(4) Positive: defines an inner product.

Note that by (2) and (3), any closed string (shaded or not) counts for the same constant .

PlanarOperations.png

The tangle action deals with the adjoint by:

with the mirror image of and the adjoint of in .

Examples and results[edit]

No-ghost theorem: The planar algebra has no ghost (i.e. element with ) if and only if

For as above, let be the null ideal (generated by elements with ). Then the quotient is a subfactor planar algebra, called the Temperley–Lieb-Jones subfactor planar algebra . Any subfactor planar algebra with constant admits as planar subalgebra.

A planar algebra is a subfactor planar algebra if and only if it is the standard invariant of an extremal subfactor of index , with and .[8][9][10] A finite depth or irreducible subfactor is extremal ( on ).

There is a subfactor planar algebra encoding any finite group (and more generally, any finite dimensional Hopf -algebra, called Kac algebra), defined by generators and relations. A (finite dimensional) Kac algebra "corresponds" (up to isomorphism) to an irreducible subfactor planar algebra of depth two.[11][12]

The subfactor planar algebra associated to an inclusion of finite groups,[13] does not always remember the (core-free) inclusion.[14][15]

A Bisch-Jones subfactor planar algebra (sometimes called Fuss-Catalan) is defined as for but by allowing two colors of string with their own constant and , with as above. It is a planar subalgebra of any subfactor planar algebra with an intermediate such that and .[16][17]

The first finite depth subfactor planar algebra of index is called the Haagerup subfactor planar algebra.[18] It has index .

The subfactor planar algebras are completely classified for index at most [19] and a bit beyond.[20] This classification was initiated by Uffe Haagerup.[21] It uses (among other things) a listing of possible principal graphs, together with the embedding theorem[22] and the jellyfish algorithm.[23]

A subfactor planar algebra remembers the subfactor (i.e. its standard invariant is complete) if it is amenable.[24] A finite depth hyperfinite subfactor is amenable.

About the non-amenable case: there are unclassifiably many irreducible hyperfinite subfactors of index 6 that all have the same standard invariant.[25]

Fourier transform and biprojections[edit]

Let be a finite index subfactor, and the corresponding subfactor planar algebra. Assume that is irreducible (i.e. ). Let be an intermediate subfactor. Let the Jones projection . Note that . Let and .

E1id.png

Note that and .

Let the bijective linear map be the Fourier transform, also called -click (of the outer star) or rotation; and let be the coproduct of and .

FourierCoproduct.png

Note that the word coproduct is a diminutive of convolution product. It is a binary operation.

The coproduct satisfies the equality

For any positive operators , the coproduct is also positive; this can be seen diagrammatically:[26]

CoproductPositive.png

Let be the contragredient (also called rotation). The map corresponds to four -clicks of the outer star, so it's the identity map, and then .

In the Kac algebra case, the contragredient is exactly the antipode,[12] which, for a finite group, correspond to the inverse.

A biprojection is a projection with a multiple of a projection. Note that and are biprojections; this can be seen as follows:

F(e1).png

A projection is a biprojection iff it is the Jones projection of an intermediate subfactor ,[27] iff .[28][26]

Galois correspondence:[29] in the Kac algebra case, the biprojections are 1-1 with the left coideal subalgebras, which, for a finite group, correspond to the subgroups.

For any irreducible subfactor planar algebra, the set of biprojections is a finite lattice,[30] of the form , as for an interval of finite groups .

Using the biprojections, we can make the intermediate subfactor planar algebras.[31][32]

The uncertainty principle extends to any irreducible subfactor planar algebra :

Let with the range projection of and the unnormalized trace (i.e. on ).

Noncommutative uncertainty principle:[33] Let , nonzero. Then

Assuming and positive, the equality holds if and only if is a biprojection. More generally, the equality holds if and only if is the bi-shift of a biprojection.

References[edit]

  1. ^ a b c Vaughan F. R. Jones (1999), "Planar algebras, I", arXiv:math/9909027
  2. ^ "Dror Bar-Natan: Publications: Cobordisms". Math.toronto.edu. doi:10.2140/gt.2005.9.1443. Retrieved 2016-11-20.
  3. ^ "Khovanov's homology for tangles and cobordisms". arXiv:math/0410495. doi:10.2140/gt.2005.9.1443. {{cite journal}}: Cite journal requires |journal= (help)
  4. ^ Vaughan F. R. Jones (2017), "Some unitary representations of Thompson's groups F and T", J. Comb. Algebra, 1 (1): 1–44, arXiv:1412.7740, doi:10.4171/JCA/1-1-1, MR 3589908, S2CID 119631229
  5. ^ Vijay Kodiyalam, V.S. Sunder (2004), "On Jones' planar algebras", J. Knot Theory Ramifications, 13 (2): 219–247, doi:10.1142/S021821650400310X, MR 2047470{{citation}}: CS1 maint: uses authors parameter (link)
  6. ^ "Vijay Kodiyalam - Planar algebras - IMSc 2015". youtube.com. 2015-11-14.
  7. ^ Vijay Kodiyalam, V.S. Sunder (2006), "The planar algebra of a semisimple and cosemisimple Hopf algebra", Proc. Indian Acad. Sci. Math. Sci., 116 (4): 1–16, arXiv:math/0506153, Bibcode:2005math......6153K{{citation}}: CS1 maint: uses authors parameter (link)
  8. ^ Sorin Popa (1995), "An axiomatization of the lattice of higher relative commutants of a subfactor", Inventiones Mathematicae, 120 (3): 427–445, Bibcode:1995InMat.120..427P, doi:10.1007/BF01241137, MR 1334479, S2CID 1740471
  9. ^ Alice Guionnet, Vaughan F. R. Jones, Dimitri Shlyakhtenko (2010), "Random matrices, free probability, planar algebras and subfactors", Clay Math. Proc., {11}: 201–239, MR 2732052{{citation}}: CS1 maint: uses authors parameter (link)
  10. ^ Vijay Kodiyalam, V.S. Sunder (2009), "From subfactor planar algebras to subfactors", Internat. J. Math., 20 (10): 1207–1231, arXiv:0807.3704, doi:10.1142/S0129167X0900573X, MR 2574313, S2CID 115161031{{citation}}: CS1 maint: uses authors parameter (link)
  11. ^ Paramita Das, Vijay Kodiyalam (2005), "Planar algebras and the Ocneanu-Szymanski theorem", Proc. Amer. Math. Soc., 133 (9): 2751–2759, doi:10.1090/S0002-9939-05-07789-0, ISSN 0002-9939, MR 2146224{{citation}}: CS1 maint: uses authors parameter (link)
  12. ^ a b Vijay Kodiyalam, Zeph Landau, V.S. Sunder (2003), "The planar algebra associated to a Kac algebra", Proc. Indian Acad. Sci. Math. Sci., 113 (1): 15–51, doi:10.1007/BF02829677, ISSN 0253-4142, MR 1971553, S2CID 56571515{{citation}}: CS1 maint: uses authors parameter (link)
  13. ^ Ved Prakash Gupta (2008), "Planar algebra of the subgroup-subfactor", Proceedings Mathematical Sciences, 118 (4): 583–612, arXiv:0806.1791, Bibcode:2008arXiv0806.1791G, doi:10.1007/s12044-008-0046-0, S2CID 5589336
  14. ^ Vijay Kodiyalam, V.S. Sunder (2000), "The subgroup-subfactor", Math. Scand., 86 (1): 45–74, doi:10.7146/math.scand.a-14281, ISSN 0025-5521, MR 1738515{{citation}}: CS1 maint: uses authors parameter (link)
  15. ^ Masaki Izumi (2002), "Characterization of isomorphic group-subgroup subfactors", Int. Math. Res. Not., 2002 (34): 1791–1803, doi:10.1155/S107379280220402X, ISSN 1073-7928, MR 1920326
  16. ^ Dietmar Bisch, Vaughan Jones (1997), "Algebras associated to intermediate subfactors", Inventiones Mathematicae, 128 (1): 89–157, Bibcode:1997InMat.128...89J, doi:10.1007/s002220050137, S2CID 119372640{{citation}}: CS1 maint: uses authors parameter (link)
  17. ^ Pinhas Grossman, Vaughan Jones (2007), "Intermediate subfactors with no extra structure", J. Amer. Math. Soc., 20 (1): 219–265, Bibcode:2007JAMS...20..219G, doi:10.1090/S0894-0347-06-00531-5, MR 2257402{{citation}}: CS1 maint: uses authors parameter (link)
  18. ^ Emily Peters (2010), "A planar algebra construction of the Haagerup subfactor", Internat. J. Math., 21 (8): 987–1045, arXiv:0902.1294, doi:10.1142/S0129167X10006380, MR 2679382, S2CID 951475
  19. ^ Vaughan F. R. Jones, Scott Morrison, Noah Snyder (2014), "The classification of subfactors of index at most ", Bull. Amer. Math. Soc. (N.S.), 51 (2): 277–327, arXiv:1304.6141, doi:10.1090/S0273-0979-2013-01442-3, MR 3166042, S2CID 29962597{{citation}}: CS1 maint: uses authors parameter (link)
  20. ^ Narjess Afzaly, Scott Morrison, David Penneys (2015), The classification of subfactors with index at most , pp. 70pp, arXiv:1509.00038, Bibcode:2015arXiv150900038A{{citation}}: CS1 maint: uses authors parameter (link)
  21. ^ Uffe Haagerup (1994), "Principal graphs of subfactors in the index range ", Subfactors (Kyuzeso, 1993): 1–38, MR 1317352
  22. ^ Vaughan Jones, David Penneys (2011), "The embedding theorem for finite depth subfactor planar algebras.", Quantum Topol., 2 (3): 301–337, arXiv:1007.3173, doi:10.4171/QT/23, MR 2812459, S2CID 59578009{{citation}}: CS1 maint: uses authors parameter (link)
  23. ^ Stephen Bigelow, David Penneys (2014), "Principal graph stability and the jellyfish algorithm.", Math. Ann., 358 (1–2): 1–24, arXiv:1208.1564, doi:10.1007/s00208-013-0941-2, MR 3157990, S2CID 3549669{{citation}}: CS1 maint: uses authors parameter (link)
  24. ^ Popa, Sorin (1994), "Classification of amenable subfactors of type II", Acta Mathematica, 172 (2): 163–255, doi:10.1007/BF02392646, MR 1278111
  25. ^ Arnaud Brothier, Stefaan Vaes (2015), "Families of hyperfinite subfactors with the same standard invariant and prescribed fundamental group.", J. Noncommut. Geom., 9 (3): 775–796, arXiv:1309.5354, doi:10.4171/JNCG/207, MR 3420531, S2CID 117853753{{citation}}: CS1 maint: uses authors parameter (link)
  26. ^ a b Zhengwei Liu (2016), "Exchange relation planar algebras of small rank", Trans. Amer. Math. Soc., 368 (12): 8303–8348, arXiv:1308.5656, doi:10.1090/tran/6582, ISSN 0002-9947, MR 3551573, S2CID 117030298
  27. ^ Dietmar Bisch (1994), "A note on intermediate subfactors", Pacific J. Math., 163 (2): 201–216, doi:10.2140/pjm.1994.163.201, ISSN 0030-8730, MR 1262294
  28. ^ Zeph A. Landau (2002), "Exchange relation planar algebras", Geom. Dedicata, 95: 183–214, doi:10.1023/A:1021296230310, ISSN 0046-5755, MR 1950890, S2CID 119036175
  29. ^ Masaki Izumi, Roberto Longo, Sorin Popa (1998), "A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras", J. Funct. Anal., 155 (1): 25–63, arXiv:funct-an/9604004, doi:10.1006/jfan.1997.3228, ISSN 0022-1236, MR 1622812, S2CID 12990106{{citation}}: CS1 maint: uses authors parameter (link)
  30. ^ Yasuo Watatani (1996), "Lattices of intermediate subfactors", J. Funct. Anal., 140 (2): 312–334, doi:10.1006/jfan.1996.0110, hdl:2115/68899, ISSN 0022-1236, MR 1409040
  31. ^ Zeph A. Landau (1998), "Intermediate subfactors", Thesis - University of California at Berkeley: 132pp
  32. ^ Keshab Chandra Bakshi (2016), "Intermediate planar algebra revisited", International Journal of Mathematics, 29 (12): 31pp, arXiv:1611.05811, Bibcode:2016arXiv161105811B, doi:10.1142/S0129167X18500775, S2CID 119305436
  33. ^ Chunlan Jiang, Zhengwei Liu, Jinsong Wu (2016), "Noncommutative uncertainty principles", J. Funct. Anal., 270 (1): 264–311, arXiv:1408.1165, doi:10.1016/j.jfa.2015.08.007, S2CID 16295570{{citation}}: CS1 maint: uses authors parameter (link)