Plant genetics

From Wikipedia, the free encyclopedia
Jump to: navigation, search
An image of multiple chromosomes, taken from many cells

Plant genetics is different from that of animals in a few ways. Like mitochondria, chloroplasts have their own DNA, complicating pedigrees somewhat. Like animals, plants have somatic mutations regularly, but these mutations can contribute to the germ line with ease, since flowers develop at the ends of branches composed of somatic cells. People have known of this for centuries, and mutant branches are called "sports". If the fruit on the sport is economically desirable, a new cultivar may be obtained.

Some plant species are capable of self-fertilization, and some are nearly exclusively self-fertilizers. This means that a plant can be both mother and father to its offspring, a rare occurrence in animals. Scientists and hobbyists attempting to make crosses between different plants must take special measures to prevent the plants from self-fertilizing. In plant breeding, people create hybrids between plant species for economic and aesthetic reasons, especially with orchids.

Plants are generally more capable of surviving, and indeed flourishing, as polyploids. In plants, polyploid individuals are created frequently by a variety of processes, and once created usually cannot cross back to the parental type. Polyploid individuals, if capable of self-fertilizing, can give rise to a new genetically distinct lineage, which can be the start of a new species. This is often called "instant speciation". Polyploids generally have larger fruit, an economically desirable trait, and many human food crops, including wheat, maize, potatoes, peanuts,[1] strawberries and tobacco, are either accidentally or deliberately created polyploids.


The structure of part of a DNA double helix

Deoxyribonucleic acid (DNA) is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms and some viruses. The main role of DNA molecules is the long-term storage of information. DNA is often compared to a set of blueprints or a recipe, or a code, since it contains the instructions needed to construct other components of cells, such as proteins and RNA molecules. The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in regulating the use of this genetic information. Geneticists, including plant geneticists, use this sequencing of DNA to their advantage as they splice and delete certain genes and regions of the DNA molecule to produce a different or desired genotype and thus, also producing a different phenotype.

Gregor Mendel[edit]

Gregor Mendel was an Augustinian priest and scientist born on 20 July 1822 in Austria-Hungary and is well known for discovering genetics. He went to the Abbey of St. Thomas in Brno. He is often called the father of genetics for his study of the inheritance of certain traits in pea plants. Mendel showed that the inheritance of these traits follows particular laws, which were later named after him. The significance of Mendel's work was not recognized until the turn of the 20th century. Its rediscovery prompted the foundation of the discipline of genetics allows geneticists today to accurately predict the outcome of such crosses and in determining the phenotypical effects of the crosses. He died on 6 January 1884 from chronic nephritis.

Modern ways to genetically modify plants[edit]

There are two predominant procedures of transforming genes in organisms: the "Gene gun" method and the Agrobacterium method.

"Gene gun" method[edit]

The "Gene Gun" method is also referred to as "biolistics" (ballistics using biological components). This technique is used for in vivo (within a living organism) transformation and has been especially useful in transforming monocot species like corn and rice. This approach literally shoots genes into plant cells and plant cell chloroplasts. DNA is coated onto small particles of gold or tungsten approximately two micrometres in diameter. The particles are placed in a vacuum chamber and the plant tissue to be engineered is placed below the chamber. The particles are propelled at high velocity using a short pulse of high pressure helium gas, and hit a fine mesh baffle placed above the tissue while the DNA coating continues into any target cell or tissue.

Agrobacterium method[edit]

Transformation via Agrobacterium has been successfully practiced in dicots, i.e. broadleaf plants, such as soybeans and tomatoes, for many years. Recently it has been adapted and is now effective in monocots like grasses, including corn and rice. In general, the Agrobacterium method is considered preferable to the gene gun, because of a greater frequency of single-site insertions of the foreign DNA, which allows for easier monitoring. In this method, the tumor inducing (Ti) region is removed from the T-DNA (transfer DNA) and replaced with the desired gene and a marker, which is then inserted into the organism. This may involve direct inoculation of the tissue with a culture of transformed Agrobacterium, or inoculation following treatment with micro-projectile bombardment, which wounds the tissue.[2] Wounding of the target tissue causes the release of phenolic compounds by the plant, which induces invasion of the tissue by Agrobacterium. Because of this, microprojectile bombardment often increases the efficiency of infection with Agrobacterium. The marker is used to find the organism which has successfully taken up the desired gene. Tissues of the organism are then transferred to a medium containing an antibiotic or herbicide, depending on which marker was used. The Agrobacterium present is also killed by the antibiotic. Only tissues expressing the marker will survive and possess the gene of interest. Thus, subsequent steps in the process will only use these surviving plants. In order to obtain whole plants from these tissues, they are grown under controlled environmental conditions in tissue culture. This is a process of a series of media, each containing nutrients and hormones. Once the plants are grown and produce seed, the process of evaluating the progeny begins. This process entails selection of the seeds with the desired traits and then retesting and growing to make sure that the entire process has been completed successfully with the desired results.

Potential detrimental effects of genetically engineered plants[edit]

According to John E. Berringer the outcome of releasing genetically modified organisms into the environment is still not known (as of 2000).[3]

Genetically modified crops[edit]

Genetically modified (GM) foods are produced from organisms that have had changes introduced into their DNA using the methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits than previous methods such as selective breeding and mutation breeding.[4]

Commercial sale of genetically modified foods began in 1994, when Calgene first marketed its unsuccessful Flavr Savr delayed-ripening tomato.[5][6] Most food modifications have primarily focused on cash crops in high demand by farmers such as soybean, corn, canola, and cotton. Genetically modified crops have been engineered for resistance to pathogens and herbicides and for better nutrient profiles.[7]

There is a scientific consensus[8][9][10][11] that currently available food derived from GM crops poses no greater risk to human health than conventional food,[12][13][14][15][16] but that each GM food needs to be tested on a case-by-case basis before introduction.[17][18] Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.[19][20][21][22] The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.[23][24][25][26]

However, there are ongoing public concerns related to food safety, regulation, labelling, environmental impact, research methods, and the fact that some GM seeds are subject to intellectual property rights owned by corporations.[27]

See also[edit]


  1. ^ "Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance - Springer". Plant Biotechnology Reports. 6: 59–67. 2012-01-01. doi:10.1007/s11816-011-0200-5. Retrieved 2014-02-06. 
  2. ^ Bidney, D; Scelonge, C; Martich, J; Burrus, M; Sims, L; Huffman, G (January 1992). "Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens". Plant Mol. Biol. 18 (2): 301–13. doi:10.1007/bf00034957. PMID 1310058. 
  3. ^ Releasing Genetically Modified Organisms: Will Any Harm Outweigh Any Advantage? John E. Beringer. The Journal of Applied Ecology, Vol. 37, No. 2 (Apr., 2000), pp. 207-214. Published by: British Ecological Society
  4. ^ GM Science Review First Report Archived October 16, 2013, at the Wayback Machine., Prepared by the UK GM Science Review panel (July 2003). Chairman Professor Sir David King, Chief Scientific Advisor to the UK Government, P 9
  5. ^ James, Clive (1996). "Global Review of the Field Testing and Commercialization of Transgenic Plants: 1986 to 1995" (PDF). The International Service for the Acquisition of Agri-biotech Applications. Retrieved 17 July 2010. 
  6. ^ Weasel, Lisa H. 2009. Food Fray. Amacom Publishing
  7. ^ "Consumer Q&A". 2009-03-06. Retrieved 2012-12-29. 
  8. ^ Nicolia, Alessandro; Manzo, Alberto; Veronesi, Fabio; Rosellini, Daniele (2013). "An overview of the last 10 years of genetically engineered crop safety research" (PDF). Critical Reviews in Biotechnology. 34: 1–12. doi:10.3109/07388551.2013.823595. PMID 24041244. 
  9. ^ "State of Food and Agriculture 2003–2004. Agricultural Biotechnology: Meeting the Needs of the Poor. Health and environmental impacts of transgenic crops". Food and Agriculture Organization of the United Nations. Retrieved February 8, 2016. 
  10. ^ Ronald, Pamela (May 5, 2011). "Plant Genetics, Sustainable Agriculture and Global Food Security". Genetics. 188: 11–20. doi:10.1534/genetics.111.128553. PMC 3120150Freely accessible. PMID 21546547. 
  11. ^ But see also:

    Domingo, José L.; Bordonaba, Jordi Giné (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37: 734–742. doi:10.1016/j.envint.2011.01.003. PMID 21296423. 

    Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment" (PDF). Science, Technology, & Human Values. 40: 1–32. doi:10.1177/0162243915598381. 

    And contrast:

    Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology: 1–5. doi:10.3109/07388551.2015.1130684. PMID 26767435. 


    Yang, Y.T.; Chen, B. (2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96: 1851–1855. doi:10.1002/jsfa.7523. PMID 26536836. 

  12. ^ "Statement by the AAAS Board of Directors On Labeling of Genetically Modified Foods" (PDF). American Association for the Advancement of Science. October 20, 2012. Retrieved February 8, 2016. 

    Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"". American Association for the Advancement of Science. Retrieved February 8, 2016. 

  13. ^ "A decade of EU-funded GMO research (2001–2010)" (PDF). Directorate-General for Research and Innovation. Biotechnologies, Agriculture, Food. European Commission, European Union. 2010. doi:10.2777/97784. ISBN 978-92-79-16344-9. Retrieved February 8, 2016. 
  14. ^ "AMA Report on Genetically Modified Crops and Foods (online summary)" (PDF). American Medical Association. January 2001. Archived from the original on September 7, 2012. Retrieved March 19, 2016. 
  15. ^ "Restrictions on Genetically Modified Organisms: United States. Public and Scholarly Opinion". Library of Congress. June 9, 2015. Retrieved February 8, 2016. 
  16. ^ "Genetically Engineered Crops: Experiences and Prospects". The National Academies of Sciences, Engineering, and Medicine (US). 2016. p. 149. Retrieved May 19, 2016. 
  17. ^ "Frequently asked questions on genetically modified foods". World Health Organization. Retrieved February 8, 2016. 
  18. ^ Haslberger, Alexander G. (2003). "Codex guidelines for GM foods include the analysis of unintended effects". Nature Biotechnology. British Medical Association. 21: 739–741. doi:10.1038/nbt0703-739. Retrieved March 21, 2016. 
  19. ^ Funk, Cary; Rainie, Lee (January 29, 2015). "Public and Scientists' Views on Science and Society". Pew Research Center. Retrieved February 24, 2016. 
  20. ^ Marris, Claire (2001). "Public views on GMOs: deconstructing the myths". EMBO Reports. 2: 545–548. doi:10.1093/embo-reports/kve142. PMC 1083956Freely accessible. PMID 11463731. 
  21. ^ Final Report of the PABE research project (December 2001). "Public Perceptions of Agricultural Biotechnologies in Europe". Commission of European Communities. Retrieved February 24, 2016. 
  22. ^ Scott, Sydney E.; Inbar, Yoel; Rozin, Paul (2016). "Evidence for Absolute Moral Opposition to Genetically Modified Food in the United States" (PDF). Perspectives on Psychological Science. 11 (3): 315–324. doi:10.1177/1745691615621275. PMID 27217243. 
  23. ^ "Restrictions on Genetically Modified Organisms". Library of Congress. June 9, 2015. Retrieved February 24, 2016. 
  24. ^ Bashshur, Ramona (February 2013). "FDA and Regulation of GMOs". American Bar Association. Retrieved February 24, 2016. 
  25. ^ Sifferlin, Alexandra (October 3, 2015). "Over Half of E.U. Countries Are Opting Out of GMOs". Time. 
  26. ^ Lynch, Diahanna; Vogel, David (April 5, 2001). "The Regulation of GMOs in Europe and the United States: A Case-Study of Contemporary European Regulatory Politics". Council on Foreign Relations. Retrieved February 24, 2016. 
  27. ^ Cowan, Tadlock (18 Jun 2011). "Agricultural Biotechnology: Background and Recent Issues" (PDF). Congressional Research Service (Library of Congress). pp. 33–38. Retrieved 27 September 2015. 

External links[edit]