# Poisson limit theorem

In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840).

## Theorem

Let ${\displaystyle p_{n}}$ be a sequence of real numbers in ${\displaystyle [0,1]}$ such that the sequence ${\displaystyle np_{n}}$ converges to a finite limit ${\displaystyle \lambda }$. Then:

${\displaystyle \lim _{n\to \infty }{n \choose k}p_{n}^{k}(1-p_{n})^{n-k}=e^{-\lambda }{\frac {\lambda ^{k}}{k!}}}$

## Proofs

{\displaystyle {\begin{aligned}{n \choose k}p^{k}(1-p)^{n-k}&\simeq \lim _{n\to \infty }{\frac {n(n-1)(n-2)\dots (n-k+1)}{k!}}\left({\frac {\lambda }{n}}\right)^{k}\left(1-{\frac {\lambda }{n}}\right)^{n-k}\\&=\lim _{n\to \infty }{\frac {n^{k}+O\left(n^{k-1}\right)}{k!}}{\frac {\lambda ^{k}}{n^{k}}}\left(1-{\frac {\lambda }{n}}\right)^{n-k}\\&=\lim _{n\to \infty }{\frac {\lambda ^{k}}{k!}}\left(1-{\frac {\lambda }{n}}\right)^{n-k}\end{aligned}}}.

Since

${\displaystyle \lim _{n\to \infty }\left(1-{\frac {\lambda }{n}}\right)^{n}=e^{-\lambda }}$

and

${\displaystyle \lim _{n\to \infty }\left(1-{\frac {\lambda }{n}}\right)^{-k}=1}$

This leaves

${\displaystyle {n \choose k}p^{k}(1-p)^{n-k}\simeq {\frac {\lambda ^{k}e^{-\lambda }}{k!}}}$.

### Alternative Proof

Using Stirling's approximation, we can write:

{\displaystyle {\begin{aligned}{n \choose k}p^{k}(1-p)^{n-k}&={\frac {n!}{(n-k)!k!}}p^{k}(1-p)^{n-k}\\&\simeq {\frac {{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}{{\sqrt {2\pi \left(n-k\right)}}\left({\frac {n-k}{e}}\right)^{n-k}k!}}p^{k}(1-p)^{n-k}\\&={\sqrt {\frac {n}{n-k}}}{\frac {n^{n}e^{-k}}{\left(n-k\right)^{n-k}k!}}p^{k}(1-p)^{n-k}\end{aligned}}}

Letting ${\displaystyle n\to \infty }$ and ${\displaystyle np=\lambda }$:

{\displaystyle {\begin{aligned}{n \choose k}p^{k}(1-p)^{n-k}&\simeq {\frac {n^{n}\,p^{k}(1-p)^{n-k}e^{-k}}{\left(n-k\right)^{n-k}k!}}\\&={\frac {n^{n}\left({\frac {\lambda }{n}}\right)^{k}(1-{\frac {\lambda }{n}})^{n-k}e^{-k}}{n^{n-k}\left(1-{\frac {k}{n}}\right)^{n-k}k!}}\\&={\frac {\lambda ^{k}\left(1-{\frac {\lambda }{n}}\right)^{n-k}e^{-k}}{\left(1-{\frac {k}{n}}\right)^{n-k}k!}}\\&\simeq {\frac {\lambda ^{k}\left(1-{\frac {\lambda }{n}}\right)^{n}e^{-k}}{\left(1-{\frac {k}{n}}\right)^{n}k!}}\end{aligned}}}

As ${\displaystyle n\to \infty }$, ${\displaystyle \left(1-{\frac {x}{n}}\right)^{n}\to e^{-x}}$ so:

{\displaystyle {\begin{aligned}{n \choose k}p^{k}(1-p)^{n-k}&\simeq {\frac {\lambda ^{k}e^{-\lambda }e^{-k}}{e^{-k}k!}}\\&={\frac {\lambda ^{k}e^{-\lambda }}{k!}}\end{aligned}}}

### Ordinary Generating Functions

It is also possible to demonstrate the theorem through the use of Ordinary Generating Functions of the binomial distribution:

${\displaystyle G_{\mathrm {bin} }(x;p,N)\equiv \sum _{k=0}^{N}\left[{\binom {N}{k}}p^{k}(1-p)^{N-k}\right]x^{k}={\Big [}1+(x-1)p{\Big ]}^{N}}$

by virtue of the Binomial Theorem. Taking the limit ${\displaystyle N\rightarrow \infty }$ while keeping the product ${\displaystyle pN\equiv \lambda }$ constant, we find

${\displaystyle \lim _{N\rightarrow \infty }G_{\mathrm {bin} }(x;p,N)=\lim _{N\rightarrow \infty }{\Big [}1+{\frac {\lambda (x-1)}{N}}{\Big ]}^{N}=\mathrm {e} ^{\lambda (x-1)}=\sum _{k=0}^{\infty }\left[{\frac {\mathrm {e} ^{-\lambda }\lambda ^{k}}{k!}}\right]x^{k}}$

which is the OGF for the Poisson distribution. (The second equality holds due to the definition of the Exponential function.)

## References

1. ^ Papoulis, Pillai, Probability, Random Variables, and Stochastic Processes, 4th Edition