Poppy-seed bagel theorem

From Wikipedia, the free encyclopedia

In physics, the poppy-seed bagel theorem concerns interacting particles (e.g., electrons) confined to a bounded surface (or body) when the particles repel each other pairwise with a magnitude that is proportional to the inverse distance between them raised to some positive power . In particular, this includes the Coulomb law observed in Electrostatics and Riesz potentials extensively studied in Potential theory. Other classes of potentials, which not necessarily involve the Riesz kernel, for example nearest neighbor interactions, are also described by this theorem in the macroscopic regime.[1] [2] For such particles, a stable equilibrium state, which depends on the parameter , is attained when the associated potential energy of the system is minimal (the so-called generalized Thomson problem). For large numbers of points, these equilibrium configurations provide a discretization of which may or may not be nearly uniform with respect to the surface area (or volume) of . The poppy-seed bagel theorem asserts that for a large class of sets , the uniformity property holds when the parameter is larger than or equal to the dimension of the set .[3] For example, when the points ("poppy seeds") are confined to the 2-dimensional surface of a torus embedded in 3 dimensions (or "surface of a bagel"), one can create a large number of points that are nearly uniformly spread on the surface by imposing a repulsion proportional to the inverse square distance between the points, or any stronger repulsion (). From a culinary perspective, to create the nearly perfect poppy-seed bagel where bites of equal size anywhere on the bagel would contain essentially the same number of poppy seeds, impose at least an inverse square distance repelling force on the seeds.

Formal definitions[edit]

For a parameter and an -point set , the -energy of is defined as follows:

For a compact set we define its minimal -point -energy as
where the minimum is taken over all -point subsets of ; i.e., . Configurations that attain this infimum are called -point -equilibrium configurations.

Poppy-seed bagel theorem for bodies[edit]

We consider compact sets with the Lebesgue measure and . For every fix an -point -equilibrium configuration . Set

where is a unit point mass at point . Under these assumptions, in the sense of weak convergence of measures,
where is the Lebesgue measure restricted to ; i.e., . Furthermore, it is true that
where the constant does not depend on the set and, therefore,
where is the unit cube in .

Poppy-seed bagel theorem for manifolds[edit]

Near minimal -energy 1000-point configurations on a torus ()

Consider a smooth -dimensional manifold embedded in and denote its surface measure by . We assume . Assume As before, for every fix an -point -equilibrium configuration and set

Then,[4][5] in the sense of weak convergence of measures,
where . If is the -dimensional Hausdorff measure normalized so that , then[4][6]
where is the volume of a d-ball.

The constant Cs,p[edit]

For , it is known[6] that , where is the Riemann zeta function. Using a modular form approach to linear programming, Viazovska together with coauthors established in a 2022 paper that in dimensions and , the values of , , are given by the Epstein zeta function[7] associated with the lattice and Leech lattice, respectively.[8] It is conjectured that for , the value of is similarly determined as the value of the Epstein zeta function for the hexagonal lattice. Finally, in every dimension it is known that when , the scaling of becomes rather than , and the value of can be computed explicitly as the volume of the unit -dimensional ball:[4]

The following connection between the constant and the problem of sphere packing is known: [9]
where is the volume of a p-ball and
where the supremum is taken over all families of non-overlapping unit balls such that the limit

See also[edit]


  1. ^ Fisher, M.E. (1964), "The free energy of a macroscopic system", Archive for Rational Mechanics and Analysis, 17 (5): 377–410, doi:10.1007/BF00250473
  2. ^ Lewin, M. (2022), "Coulomb and Riesz gases: The known and the unknown", Journal of Mathematical Physics, 63 (6), arXiv:2202.09240, doi:10.1063/5.0086835
  3. ^ Hardin, D. P.; Saff, E. B. (2004), "Discretizing manifolds via minimum energy points" (PDF), Notices of the American Mathematical Society, 51 (10): 1186–1194
  4. ^ a b c Hardin, D. P.; Saff, E. B. (2005), "Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds", Advances in Mathematics, 193 (1): 174–204, doi:10.1016/j.aim.2004.05.006
  5. ^ Borodachov, S. V.; Hardin, D. P.; Saff, E. B. (2008), "Asymptotics for discrete weighted minimal Riesz energy problems on rectifiable sets", Transactions of the American Mathematical Society, 360 (3): 1559–1580, arXiv:math-ph/0602025, doi:10.1090/S0002-9947-07-04416-9
  6. ^ a b Martínez-Finkelshtein, A.; Maymeskul, V.; Rakhmanov, E. A.; Saff, E. B. (2004), "Asymptotics for minimal discrete Riesz energy on curves in ", Canadian Journal of Mathematics, 56 (3): 529–552, doi:10.4153/CJM-2004-024-1
  7. ^ "Epstein zeta-function". Encyclopedia of Mathematics. EMS Press. Retrieved June 17, 2023.
  8. ^ Cohn, H.; Kumar, A.; Miller, S.; Radchenko, D.; Viazovska, M. (2022), "Universal optimality of the E_8 and Leech lattices and interpolation formulas", Annals of Mathematics, 196 (3): 983–1082, arXiv:1902.05438, doi:10.4007/annals.2022.196.3.3
  9. ^ Borodachov, S. V.; Hardin, D. P.; Saff, E. B. (2007), "Asymptotics of Best-Packing on Rectifiable Sets", Proceedings of the American Mathematical Society, 135 (8): 2369–2380, arXiv:math-ph/0605021, doi:10.1090/S0002-9939-07-08975-7