Electronic devices have significantly influenced the development of many aspects of modern society, such as telecommunications, entertainment, education, health care, industry, and security. The main driving force behind the advancement of electronics is the semiconductor industry, which continually produces ever-more sophisticated electronic devices and circuits in response to global demand. The semiconductor industry is one of the global economy's largest and most profitable sectors, with annual revenues exceeding $481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $29 trillion in online sales in 2017. (Full article...)
This approach is especially useful in the design of mechanical filters—these use mechanical devices to implement an electrical function. However, the technique can be used to solve purely mechanical problems, and can also be extended into other, unrelated, energy domains. Nowadays, analysis by analogy is a standard design tool wherever more than one energy domain is involved. It has the major advantage that the entire system can be represented in a unified, coherent way. Electrical analogies are particularly used by transducer designers, by their nature they cross energy domains, and in control systems, whose sensors and actuators will typically be domain-crossing transducers. A given system being represented by an electrical analogy may conceivably have no electrical parts at all. For this reason domain-neutral terminology is preferred when developing network diagrams for control systems. (Full article...)
Image 2
The impedance analogy is a method of representing a mechanical system by an analogous electrical system. The advantage of doing this is that there is a large body of theory and analysis techniques concerning complex electrical systems, especially in the field of filters. By converting to an electrical representation, these tools in the electrical domain can be directly applied to a mechanical system without modification. A further advantage occurs in electromechanical systems: Converting the mechanical part of such a system into the electrical domain allows the entire system to be analysed as a unified whole.
The mathematical behaviour of the simulated electrical system is identical to the mathematical behaviour of the represented mechanical system. Each element in the electrical domain has a corresponding element in the mechanical domain with an analogous constitutive equation. All laws of circuit analysis, such as Kirchhoff's circuit laws, that apply in the electrical domain also apply to the mechanical impedance analogy. (Full article...)
Image 3
An antimetric electrical network is an electrical network that exhibits anti-symmetrical electrical properties. The term is often encountered in filter theory, but it applies to general electrical network analysis. Antimetric is the diametrical opposite of symmetric; it does not merely mean "asymmetric" (i.e., "lacking symmetry"). It is possible for networks to be symmetric or antimetric in their electrical properties without being physically or topologically symmetric or antimetric. (Full article...)
Image 4
Staggered tuning is a technique used in the design of multi-stage tuned amplifiers whereby each stage is tuned to a slightly different frequency. In comparison to synchronous tuning (where each stage is tuned identically) it produces a wider bandwidth at the expense of reduced gain. It also produces a sharper transition from the passband to the stopband. Both staggered tuning and synchronous tuning circuits are easier to tune and manufacture than many other filter types.
The function of stagger-tuned circuits can be expressed as a rational function and hence they can be designed to any of the major filter responses such as Butterworth and Chebyshev. The poles of the circuit are easy to manipulate to achieve the desired response because of the amplifier buffering between stages. (Full article...)
Image 5
First-generation "chrome bumper" Naim NAITThe Naim NAIT (acronym for "Naim Audio Integrated amplifier") is an integrated amplifier from the British hi-fi manufacturer, Naim Audio. The original NAIT is one of the most recognisable pieces of hi-fi equipment ever made. Hi-fi critic Lucio Cadeddu recognised its legendary status, referring to it as "one of the most controversial and famous integrated amps in the history of HiFi".
Having already made their name producing solid-state pre-amplifier and power-amplifier separates, Naim launched a low-powered integrated amplifier that embodies the qualities of its amplifiers, aimed at cost-conscious audiophiles. (Full article...)
The project began with two aims: to prove the practicality of the Williams tube, an early form of computer memory based on standard cathode-ray tubes (CRTs); and to construct a machine that could be used to investigate how computers might be able to assist in the solution of mathematical problems. The first of the series, the Manchester Baby, ran its first program on 21 June 1948. As the world's first stored-program computer, the Baby, and the Manchester Mark 1 developed from it, quickly attracted the attention of the United Kingdom government, who contracted the electrical engineering firm of Ferranti to produce a commercial version. The resulting machine, the Ferranti Mark 1, was the world's first commercially available general-purpose computer. (Full article...)
Filters are required to operate at many different frequencies, impedances and bandwidths. The utility of a prototype filter comes from the property that all these other filters can be derived from it by applying a scaling factor to the components of the prototype. The filter design need thus only be carried out once in full, with other filters being obtained by simply applying a scaling factor. (Full article...)
Image 8
The circuit topology of an electronic circuit is the form taken by the network of interconnections of the circuit components. Different specific values or ratings of the components are regarded as being the same topology. Topology is not concerned with the physical layout of components in a circuit, nor with their positions on a circuit diagram; similarly to the mathematical concept of topology, it is only concerned with what connections exist between the components. Numerous physical layouts and circuit diagrams may all amount to the same topology.
Strictly speaking, replacing a component with one of an entirely different type is still the same topology. In some contexts, however, these can loosely be described as different topologies. For instance, interchanging inductors and capacitors in a low-passfilter results in a high-pass filter. These might be described as high-pass and low-pass topologies even though the network topology is identical. A more correct term for these classes of object (that is, a network where the type of component is specified but not the absolute value) is prototype network. (Full article...)
Image 9
A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if the far end of the line is not terminated in its characteristic impedance. This can happen, for instance, if two lengths of dissimilar transmission lines are joined.
This article is about signal reflections on electrically conducting lines. Such lines are loosely referred to as copper lines, and indeed, in telecommunications are generally made from copper, but other metals are used, notably aluminium in power lines. Although this article is limited to describing reflections on conducting lines, this is essentially the same phenomenon as optical reflections in fibre-optic lines and microwave reflections in waveguides. (Full article...)
Image 10
The Sinclair Sovereign was a high-end calculator introduced by Clive Sinclair's company Sinclair Radionics in 1976. It was an attempt to escape from the unprofitable low end of the market, and one of the last calculators Sinclair produced. Made with a case of pressed steel that a variety of finishes, it cost between £30 and £60 at a time when other calculators could be purchased for under £5. A number of factors meant that the Sovereign was not a commercial success, including the cost, high import levies on components, competition from cheaper calculators manufactured abroad, and the development of more power-efficient designs using liquid-crystal displays. Though it came with a five-year guarantee, issues such as short battery life limited its usefulness. The company moved on to producing computers soon afterwards.
The first-generation iPad (/ˈaɪpæd/; EYE-pad) (retrospectively referred to unofficially as the iPad 1 or original iPad) is a tablet computer designed and marketed by Apple Inc. as the first device in the iPad lineup of tablet computers. It features an Apple A4SoC, a 9.7 in (250 mm) touchscreen display, and, on certain variants, the capability of accessing cellular networks. Using the iOS operating system, the iPad can play music, send and receive emails and browse the web. Other functions, which include the ability to play games and access references, GPS navigation software and social network services, can be enabled by downloading apps.
The device was announced and unveiled on January 27, 2010, by Steve Jobs, Apple's CEO, at an Apple press event. On April 3, 2010, the Wi-Fi variant of the device was released in the United States, followed by the release of the "Wi-Fi + 3G" variant on April 30. On May 28, 2010, it was released in Australia, Canada, France, Japan, Italy, Germany, Spain, Switzerland and the United Kingdom. (Full article...)
The actual impedance may vary quite considerably from the nominal figure with changes in frequency. In the case of cables and other transmission lines, there is also variation along the length of the cable, if it is not properly terminated. (Full article...)
Image 13
The Nakamichi Dragon is an audio cassette deck that was introduced by Nakamichi in 1982 and marketed until 1994. The Dragon was the first Nakamichi model with bidirectional replay capability and the world's first production tape recorder with an automatic azimuth correction system; this feature, which was invented by Philips engineers and improved by Niro Nakamichi, continuously adjusts the azimuth of the replay head to minimize apparent head skew and correctly reproduce the treble signal present on the tape. The system allows the correct reproduction of mechanically skewed cassettes and recordings made on misaligned decks. Apart from the Dragon, similar systems have only been used in the Nakamichi TD-1200 car cassette player and the Marantz SD-930 cassette deck.
At the time of its introduction, the Dragon had the lowest-ever wow and flutter and the highest-ever dynamic range, losing marginally to the former Nakamichi flagship the 1000ZXL in frequency response. Competing models by Sony, Studer, Tandberg and TEAC that were introduced later in the 1980s sometimes surpassed the Dragon in mechanical quality and feature set but none could deliver the same mix of sound quality, flexibility and technological advancement. The Dragon, despite inherent issues with long-term reliability, remained the highest point of compact cassette technology. (Full article...)
Image 14
The JBL Paragon, measuring almost 9 feet (2.7 m) from left to right The JBL D44000 Paragon is a one-piece stereo loudspeaker created by JBL that was introduced in 1957 and discontinued in 1983; its production run was the longest of any JBL speaker. At its launch, the Paragon was the most expensive domestic loudspeaker on the market.
Designed by Arnold Wolf from a concept elaborated by Richard Ranger, it is almost 9 feet (2.7 m) long and requires over a hundred-man hours of hand-finishing by a team of dedicated craftsmen. Resembling less a conventional loudspeaker than an elegant sideboard, it is a landmark product for the company that was sought after by the well-heeled and by celebrities. With an estimated total production of about 1,000 units, it is highly sought after by collectors to this day. (Full article...)
There is a critical value of transformer coupling coefficient at which the frequency response of the amplifier is maximally flat in the passband and the gain is maximum at the resonant frequency. Designs frequently use a coupling greater than this (over-coupling) in order to achieve an even wider bandwidth at the expense of a small loss of gain in the centre of the passband. (Full article...)
Guglielmo Marchese Marconi, GCVO (25 April 1874-20 July 1937) was an Italian inventor, best known for his development of a practical radiotelegraph system, which served as the foundation for the establishment of numerous affiliated companies worldwide. He shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun, "in recognition of their contributions to the development of wireless telegraphy". While growing up, Marconi had an intense early interest in science, and was especially fascinated by electricity.
In electromagnetics and communications engineering, the term waveguide may refer to any linear structure that guides electromagnetic waves. However, the original and most common meaning is a hollow metal pipe used for this purpose.
The electromagnetic waves in (metal-pipe) waveguide may be imagined as travelling down the guide in a zig-zag path, being repeatedly reflected between opposite walls of the guide. For the particular case of rectangular waveguide, it is possible to base an exact analysis on this view. Propagation in dielectric waveguide may be viewed in the same way, with the waves confined to the dielectric by total internal reflection at its surface.
... that a 1982 court case established that video games may qualify for multiple types of U.S. copyright protection?
... that in 2019, Chinese electronics company Xiaomi posted a video of their third-quarterly financial report featuring a parody of the anime song "Renai Circulation"?
Motorola RAZR is a thin clamshellmobile/cellularcamera phone from Motorola. The phone was initially regarded as an exclusive fashion phone, with a high price of $500 with service agreement and $800 without. However, in 2005 the phone entered the mass-market as a mid-priced phone. Motorola released a CDMA version of the RAZR on November 21, 2005, called the RAZR V3c. Changes in the CDMA version include a slightly thicker form factor, more internal memory (30 MB), and a higher resolution 1.3 megapixel camera.