Jump to content

Portal:Electronics

From Wikipedia, the free encyclopedia

The Electronics Portal

Modern surface-mount electronic components on a printed circuit board, with a large integrated circuit at the top

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. Electronics is a subfield of physics and electrical engineering which uses active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog signals to digital signals.

Electronic devices have hugely influenced the development of many aspects of modern society, such as telecommunications, entertainment, education, health care, industry, and security. The main driving force behind the advancement of electronics is the semiconductor industry, which in response to global demand continually produces ever-more sophisticated electronic devices and circuits. The semiconductor industry is one of the largest and most profitable sectors in the global economy, with annual revenues exceeding $481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $29 trillion in online sales in 2017. (Full article...)

These are Good articles, which meet a core set of high editorial standards.

Selected image


Credit: Tony R. Kuphaldt, User:Dna-webmaster
Basic telephony multiplexer system.

Selected biography

Sir Joseph John Thomson, OM, FRS (18 December 1856 – 30 August 1940) often known as J. J. Thomson, was an English physicist. Thomson is credited for the discovery of the electron, of isotopes, and the invention of the mass spectrometer. Thomson conducted a series of experiments with cathode ray tubes which led him to the discovery of electrons and subatomic particles.

Selected article

Satellite-TV block-converter circuit board
A low-noise block converter with distributed elements. The circuitry on the right is lumped elements. The distributed-element circuitry is centre and left of centre, and is constructed in microstrip.

Distributed-element circuits are electrical circuits composed of lengths of transmission lines or other distributed components. These circuits perform the same functions as conventional circuits composed of passive components, such as capacitors, inductors, and transformers. They are used mostly at microwave frequencies, where conventional components are difficult (or impossible) to implement.

Conventional circuits consist of individual components manufactured separately then connected together with a conducting medium. Distributed-element circuits are built by forming the medium itself into specific patterns. A major advantage of distributed-element circuits is that they can be produced cheaply as a printed circuit board for consumer products, such as satellite television. They are also made in coaxial and waveguide formats for applications such as radar, satellite communication, and microwave links. (Full article...)

Did you know (auto-generated) - load new batch

Consumer showcase

Selected design

WikiProjects

Main topics


Subcategories

Category puzzle
Category puzzle
Select [►] to view subcategories

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals

Purge server cache