Portal:Algebra/Selected article

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Selected Article

Stereographic projection in 3D.png
3D illustration of a stereographic projection from the north pole onto a plane below the sphere.

The stereographic projection is a particular mapping (function) that projects a sphere onto a plane. The projection is defined on the entire sphere, except at one point — the projection point. Where it is defined, the mapping is smooth and bijective. It is also conformal, meaning that it preserves angles. On the other hand, it does not preserve area, especially near the projection point.

Intuitively, then, the stereographic projection is a way of picturing the sphere as the plane, with some inevitable compromises. Because the sphere and the plane appear in many areas of mathematics and its applications, so does the stereographic projection; it finds use in diverse fields including differential geometry, complex analysis, cartography, geology, and crystallography.

...Archive Image credit: Mark Howison

Selected Article

Wallpaper group-p6m-1.jpg
Example of a Persian design with wallpaper group type "p6m"

A wallpaper group is a mathematical concept used to classify repetitive designs on two-dimensional surfaces, such as floors and walls, based on the symmetries in the pattern. Such patterns occur frequently in architecture and decorative art. The mathematical study of such patterns reveals that exactly 17 different types of pattern can occur.

Wallpaper groups are examples of an abstract algebraic structure known as a group. Groups are frequently used in mathematics to study the notion of symmetry. Wallpaper groups are related to the simpler frieze groups, and to the more complex three-dimensional crystallographic groups.

...Archive Image credit: Owen Jones

Selected Article

Riemann Sphere.jpg
A loxodromic representation of the Riemann sphere.

The Riemann sphere is a way of extending the plane of complex numbers with one additional point at infinity, in a way that makes expressions such as

well-behaved and useful, at least in certain contexts. It is named after 19th century mathematician Bernhard Riemann. It is also called the complex projective line, denoted CP1.

On a purely algebraic level, the complex numbers with an extra infinity element constitute a number system known as the extended complex numbers. Arithmetic with infinity does not obey all of the usual rules of algebra, and so the extended complex numbers do not form a field. However, the Riemann sphere is geometrically and analytically well-behaved, even near infinity; it is a one-dimensional complex manifold, also called a Riemann surface.

In complex analysis, the Riemann sphere facilitates an elegant theory of meromorphic functions. The Riemann sphere is ubiquitous in projective geometry and algebraic geometry as a fundamental example of a complex manifold, projective space, and algebraic variety. It also finds utility in other disciplines that depend on analysis and geometry, such as quantum mechanics and other branches of physics.

...Archive Image credit: Karthik Narayanaswami

Selected Article

The graph of a real-valued quadratic function of a real variable x, is a parabola.

A quadratic equation is a polynomial equation of degree two. The general form is

where a ≠ 0 (if a = 0, then the equation becomes a linear equation). The letters a, b, and c are called coefficients: the quadratic coefficient a is the coefficient of x2, the linear coefficient b is the coefficient of x, and c is the constant coefficient, also called the free term.

Quadratic equations are called quadratic because quadratus is Latin for "square"; in the leading term the variable is squared.

A quadratic equation has two (not necessarily distinct) solutions, which may be real or complex, given by the quadratic formula:

These solutions are roots of the corresponding quadratic function

...Archive Image credit: Enoch Lau

Selected Article

A Hilbert space is a real or complex vector space with a positive-definite Hermitian form, that is complete under its norm. Thus it is an inner product space, which means that it has notions of distance and of angle (especially the notion of orthogonality or perpendicularity). The completeness requirement ensures that for infinite dimensional Hilbert spaces the limits exist when expected, which facilitates various definitions from calculus. A typical example of a Hilbert space is the space of square summable sequences.

Hilbert spaces allow simple geometric concepts, like projection and change of basis to be applied to infinite dimensional spaces, such as function spaces. They provide a context with which to formalize and generalize the concepts of the Fourier series in terms of arbitrary orthogonal polynomials and of the Fourier transform, which are central concepts from functional analysis. Hilbert spaces are of crucial importance in the mathematical formulation of quantum mechanics.

...Archive

Selected Article

Mona Lisa with eigenvector.png
In this shear transformation of the Mona Lisa, the central vertical axis (red vector) is unchanged, but the diagonal vector (blue) has changed direction. Hence the red vector is said to be an eigenvector of this particular transformation and the blue vector is not.

In mathematics, an eigenvector of a transformation is a vector which that transformation simply multiplies by a constant factor, called the eigenvalue of that vector. Often, a transformation is completely described by its eigenvalues and eigenvectors. The eigenspace for a factor is the set of eigenvectors with that factor as eigenvalue.

In the specific case of linear algebra, the eigenvalue problem is this: given an n by n matrix A,what nonzero vectors x in exist, such that Ax is a scalar multiple of x?

The scalar multiple is denoted by the Greek letter λ and is called an eigenvalue of the matrix A, while x is called the eigenvector of A corresponding to λ. These concepts play a major role in several branches of both pure and applied mathematics — appearing prominently in linear algebra, functional analysis, and to a lesser extent in nonlinear situations.

It is common to prefix any natural name for the vector with eigen instead of saying eigenvector. For example, eigenfunction if the eigenvector is a function, eigenmode if the eigenvector is a harmonic mode, eigenstate if the eigenvector is a quantum state, and so on. Similarly for the eigenvalue, e.g. eigenfrequency if the eigenvalue is (or determines) a frequency.

...Archive Image credit: User:Voyajer

Selected Article

Circle as Lie group.svg
The circle of center 0 and radius 1 in the complex plane is a Lie group with complex multiplication.

In mathematics, a Lie group (/ˈl/, sounds like "Lee"), is a group which is also a differentiable manifold, with the property that the group operations are compatible with the smooth structure. They are named after the nineteenth century Norwegian mathematician Sophus Lie, who laid the foundations of the theory of continuous transformation groups.

Lie groups represent the best developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. They provide a natural framework for analysing the continuous symmetries of differential equations (Differential Galois theory), much in the same way as permutation groups are used in Galois theory for analysing the discrete symmetries of algebraic equations. An extension of Galois theory to the case of continuous symmetry groups was one of Lie's principal motivations, his idée fixe.

...Archive Image credit: User:Oleg Alexandrov

Selected Article

In mathematics, the exterior product or wedge product of vectors is an algebraic construction generalizing certain features of the cross product to higher dimensions. Like the cross product, and the scalar triple product, the exterior product of vectors is used in Euclidean geometry to study areas, volumes, and their higher-dimensional analogs. In linear algebra, the exterior product provides an abstract algebraic basis-independent manner for describing the determinant and the minors of a linear transformation, and is fundamentally related to ideas of rank and linear independence. The exterior algebra (also known as the Grassmann algebra, after Hermann Grassmann[1]) of a given vector space V is the algebra generated by the exterior product. It is widely used in contemporary geometry, especially differential geometry and algebraic geometry through the algebra of differential forms, as well as in multilinear algebra and related fields.

...Archive

Selected Article

  1. ^ Grassmann (1844) introduced these as extended algebras (cf. Clifford 1878). He used the word äußere (literally translated as outer, or exterior) only to indicate the produkt he defined, which is nowadays conventionally called exterior product, probably to distinguish it from the outer product as defined in modern linear algebra.