Portal:Cambrian/Natural world articles

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Selected articles covering the Cambrian and the natural world

Artist's reconstruction of Waptia fieldensis.
The evolutionary history of life on Earth traces the processes by which living and fossil organisms have evolved since life on the planet first originated until the present day. Earth formed about 4.5 Ga (billion years ago) and life appeared on its surface within one billion years. Microbial mats of coexisting bacteria and archaea were the dominant form of life in the early Archean. The evolution of oxygenic photosynthesis, around 3.5 Ga, eventually led to the oxygenation of the atmosphere, beginning around 2.4 Ga. The earliest evidence of eukaryotes (complex cells with organelles), dates from 1.85 Ga, and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. Later, around 1.7 Ga, multicellular organisms began to appear, with differentiated cells performing specialised functions. The earliest land plants date back to around 450 Ma (million years ago), although evidence suggests that algal scum formed on the land as early as 1.2 Ga. Land plants were so successful that they are thought to have contributed to the late Devonian extinction event. Invertebrate animals appear during the Vendian period, while vertebrates originated about525 Ma during the Cambrian explosion. During the Permian period, synapsids, including the ancestors of mammals, dominated the land, but the Permian–Triassic extinction event251 Ma came close to wiping out all complex life. (see more...)



Fossil of Opabinia regalis from the Burgess shale on display at the Smithsonian in Washington, DC..
Opabinia is an extinct stem-arthropod genus found in Cambrian fossil deposits. The only known species, O. regalis, is known from the Middle Cambrian Burgess Shale Lagerstätte of British Columbia, Canada. Fewer than twenty good specimens have been described. Opabinia was a soft-bodied animal of modest size, and its segmented body had lobes along the sides and a fan-shaped tail. The head shows unusual features: five eyes, a mouth under the head and facing backwards, and a proboscis that probably passed food to the mouth. Opabinia probably lived on the seafloor, using the proboscis to seek out small, soft food. When the first thorough examination of Opabinia in 1975 revealed its unusual features, it was thought to be unrelated to any known phylum, although possibly related to a hypothetical ancestor of arthropods and of annelid worms. However other finds, most notably Anomalocaris, suggested that it belonged to a group of animals that were closely related to the ancestors of arthropods and of which the living animals onychophorans and tardigrades may also be members.(see more...)



Artist's reconstruction of Waptia fieldensis.
The small shelly fauna or small shelly fossils, abbreviated to SSF, are mineralized fossils, many only a few millimetres long, with a nearly continuous record from the latest stages of the Ediacaran to the end of the Early Cambrian period. They are very diverse, and there is no formal definition of "small shelly fauna" or "small shelly fossils". Almost all are from earlier rocks than more familiar fossils such as trilobites. Since most SSFs were preserved by being covered quickly with phosphate and this method of preservation is mainly limited to the Late Ediacaran and Early Cambrian periods, the animals that made them may actually have arisen earlier and persisted after this time span. The bulk of the fossils are fragments or disarticulated remains of larger organisms, including sponges, molluscs, slug-like halkieriids, brachiopods, echinoderms, and onychophoran-like organisms that may have been close to the ancestors of arthropods. Although the small size and often fragmentary nature of SSFs makes it difficult to identify and classify them, they provide very important evidence for how the main groups of marine invertebrates evolved, and particularly for the pace and pattern of evolution in the Cambrian explosion. Besides including the earliest known representatives of some modern phyla, they have the great advantage of presenting a nearly continuous record of Early Cambrian organisms whose bodies include hard parts. (see more...)



Artist's reconstruction of Waptia fieldensis.
Waptia fieldensis is an extinct species of arthropod from the Middle Cambrian Burgess Shale Lagerstätte of Canada. It grew to a length of about8 cm (3 in) and resembled modern shrimp in both morphology and habit. It had a large bivalved carapace and a segmented body terminating into a pair of tail flaps. It was an active swimmer, feeding on organic particles it gathers from the seafloor substrate.

Based on the number of individuals, Waptia fieldensis is the third most abundant arthropod from the Burgess Shale Formation, with thousands of specimens collected. It was among the first fossils found by the American paleontologist Charles D. Walcott in 1909. He described it in 1912 and named it after two mountains near the discovery site – Mount Wapta and Mount Field.

Waptia fieldensis is the only species classified under the genus Waptia. Although it bears a remarkable resemblance to modern crustaceans, its taxonomic affinities remain unclear. It is currently classified as a stem group crustacean and tentatively included in the clade Crustaceomorpha. (see more...)



Death Valley viewed from space.

The exposed geology of the Death Valley area presents a diverse and complex set of at least 23 formations of sedimentary units, two major gaps in the geologic record called unconformities, and at least one distinct set of related formations geologists call a group. The oldest rocks in the area are extensively metamorphosed by intense heat and pressure and are at least 1700 million years old. These rocks were intruded by a mass of granite 1400 Ma (million years ago) and later uplifted and exposed to nearly 500 million years of erosion.

Marine deposition occurred 1200 to 800 Ma, creating thick sequences of conglomerate, mudstone, and carbonate rock topped by stromatolites, and possibly glacial deposits from the hypothesized Snowball Earth event. Rifting thinned huge roughly linear parts of the supercontinent Rodinia enough to allow sea water to invade and divide its landmass into component continents separated by narrow straits. A passive margin developed on the edges of these new seas in the Death Valley region. Carbonate banks formed on this part of the two margins only to be subsided as the continental crust thinned until it broke, giving birth to a new ocean basin. An accretion wedge of clastic sediment then started to accumulate at the base of the submerged precipice, entombing the region's first known fossils of complex life. These sandy mudflats gave way about 550 Ma to a carbonate platform which lasted for the next 300 million years of Paleozoic time. (see more...)



Modern Halobacteria sp.
The Archaea (/ɑːrˈkə/ (About this sound listen) or /ɑːrˈkə/; singular archaeon) constitute a domain or kingdom of single-celled microorganisms. These microbes are prokaryotes, meaning that they have no cell nucleus or any other membrane-bound organelles within their cells.

The Archaea show many differences in their biochemistry from other forms of life, and so they are now classified as a separate domain in the three-domain system. So far, the Archaea have been further divided into four recognized phyla. Classification is still difficult, because the vast majority have never been studied in the laboratory.

Archaea and bacteria are quite similar in size and shape, but despite this visual similarity to bacteria, archaea possess genes and several metabolic pathways that are more closely related to those of eukaryotes. Other aspects of archaean biochemistry are unique, such as their reliance on ether lipids in their cell membranes. Archaea use a much greater variety of sources of energy than eukaryotes: ranging from familiar organic compounds such as sugars, to ammonia, metal ions or even hydrogen gas. Salt-tolerant archaea use sunlight as an energy source, and other species of archaea fix carbon. Archaea reproduce asexually by binary fission, fragmentation, or budding.

Archaea are found in a broad range of habitats, includingsoils, oceans, marshlands and the human colon and navel. Archaea are now recognized as a major part of Earth's life and may play roles in both the carbon cycle and the nitrogen cycle. (see more...)



Scanning electron micrograph of modern Escherichia coli bacilli.
Bacteria (/bækˈtɪəriə/ (About this sound listen); singular: bacterium) constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria have a number of shapes, ranging from spheres to rods and spirals. Bacteria were among the first life forms to appear on Earth, and are present in mosthabitats on the planet. Bacteria inhabit soil, water, acidic hot springs, radioactive waste, and the deep portions of Earth's crust. Bacteria also live in plants and animals and have flourished in manned space vehicles. There are approximately 5×1030 bacteria on Earth, forming a biomass that exceeds that of all plants and animals. Bacteria are vital in recycling nutrients, with many steps in nutrient cycles depending on these organisms, such as the fixation of nitrogen from the atmosphere and putrefaction. In the biological communities surrounding hydrothermal vents and cold seeps, bacteria provide the nutrients needed to sustain life by converting dissolved compounds such as hydrogen sulphide and methane to energy. Most bacteria have not been characterised, and only about half of the phyla of bacteria have species that can be grown in the laboratory. The study of bacteria is known as bacteriology, a branch of microbiology. Unlike cells of animals and other eukaryotes, bacterial cells do not contain a nucleus and rarely harbour membrane-bound organelles. (see more...)



An 1888 illustration of Prototaxites in section.
A fungus (/ˈfʌŋɡəs/; plural: fungi) is a member of a large group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, Fungi, which is separate from plants and animals. One major difference is that fungal cells have cell walls that contain chitin, unlike the cell walls of plants and some protists, which contain cellulose. These and other differences show that the fungi form a single group of related organisms, named the Eumycota. The discipline of biology devoted to the study of fungi is known as mycology. Genetic studies have shown that fungi are more closely related to animals than to plants. Abundant worldwide, most fungi are inconspicuous because of the small size of their structures, and their cryptic lifestyles in soil, on dead matter, and as symbionts of plants, animals, or other fungi. They may become noticeable when fruiting, either as mushrooms or molds. Fungi perform an essential role in the decomposition of organic matter and have fundamental roles in nutrient cycling and exchange. However, little is known of the true biodiversity of Kingdom Fungi, which has been estimated at 1.5 million to 5 million species. Phylogenetic studies published in the last decade have helped reshape the classification of Kingdom Fungi, which is divided into one subkingdom, seven phyla, and ten subphyla. A group of all the fungi present in a particular area or geographic region is known as mycobiota. (see more...)



A modern Rotavirus.
A virus is a small infectious agent that replicates only inside the living cells of other organisms. Viruses can infect members of every kingdom of life, but individual kinds of virus may specialize in certain types of host. About 5,000 viruses have been described in detail, although there are millions of different types. Viruses are found in almost every ecosystem on Earth and are the most abundant type of biological entity. The study of viruses is known as virology.

Virus particles (known as virions) consist of two or three parts: i) the genetic material made from either DNA or RNA, long molecules that carry genetic information; ii) a proteincoat that protects these genes; and in some cases iii) an envelope of lipids that surrounds the protein coat when they are outside a cell. The shapes of viruses range from simplehelical and icosahedral forms to more complex structures. The average virus is about one one-hundredth the size of the average bacterium.

The origins of viruses in the evolutionary history of life are unclear: some may have evolved from plasmids—pieces of DNA that can move between cells—while others may have evolved from bacteria. Viruses are considered by some to be a life form, because they carry genetic material, reproduce, and evolve through natural selection. However they lack key characteristics (such as cell structure) that are generally considered necessary to count as life, so whether or not viruses are truly alive is controversial. (see more...)



Ernst Haeckel's "Acephala".
Bivalvia is a class of marine and freshwater molluscs with laterally compressed bodies enclosed by a shell in two hinged parts. Bivalves include clams, oysters, mussels, scallops, and numerous other families of shells. The majority are filter feeders. Most bivalves bury themselves in sediment on the seabed, where they are safe from predation. Others lie on the sea floor or attach themselves to rocks or other hard surfaces. Some bivalves, such as the scallops, can swim.

The shell of a bivalve is composed of calcium carbonate, and consists of two, usually similar, parts called valves. These are joined together along one edge by a flexible ligament that, in conjunction with interlocking "teeth" on each of the valves, forms the hinge. The shell is typically bilaterally symmetrical, with the hinge lying in the sagittal plane. Adult shell sizes vary from fractions of a millimetre to over a metre in length, but the majority of species do not exceed 10 cm (4 in).

Bivalves appear in the fossil record first in the early Cambrian more than 500 million years ago. The total number of living species is approximately 9,200. These species are placed within 1,260 genera and 106 families. Marine bivalves (including brackish water and estuarine species) represent about 8,000 species, combined in four subclasses and 99 families with 1,100 genera. The largestrecent marine family is the Veneridae, with more than 680 species. (see more...)



Burgessochaeta setigera
The annelids are a large phylum of segmented worms, with over 2,000 modern species including ragworms, earthworms and leeches. They are found in marine environments from tidal zones to hydrothermal vents, in freshwater, and in moist terrestrial environments. The basic annelid form consists of multiple segments, each of which has the same sets of organs and, in most polychaetes, a pair of parapodia that many species use for locomotion. Septa separate the segments of many species, but are poorly defined or absent in some. Septa also enable annelids to change the shapes of individual segments, which facilitates movement by "ripples" that pass along the body or by undulations. Although many species can reproduce asexually and use similar mechanisms to regenerate after severe injuries, sexual reproduction is the normal method in species whose reproduction has been studied. Since annelids are soft-bodied, their fossils are rare – mostly jaws and the mineralized tubes that some of the species secreted. Although some late Ediacaran fossils may represent annelids, the oldest known fossil that is identified with confidence comes from about 518 million years ago in the early Cambrian period. Fossils of most modern mobile polychaete groups appeared by the end of the Carboniferous, about 299 million years ago. Scientists disagree about whether some body fossils from the mid Ordovician, about 472 to 461 million years ago, are the remains of oligochaetes, and the earliest certain fossils of the group appear in the Tertiary period, which began 65 million years ago. (see more...)



Asaphiscus wheeleri.
Arthropods are members of the phylum Arthropoda, and include the insects, arachnids, and crustaceans. They are characterized by their jointed limbs and cuticles. The rigid cuticle inhibits growth, so arthropods replace it periodically by moulting. The arthropod body plan consists of repeated segments, each with a pair of appendages. Their versatility has enabled them to become the most species-rich members of all ecological guilds in most environments. They have over a million described species, making up more than 80% of all described living animal species. They range in size from microscopic plankton up to forms a few meters long.

Like their exteriors, the internal organs of arthropods are generally built of repeated segments. Their vision relies on various combinations of compound eyes and pigment-pit ocelli. Arthropods also have a wide range of chemical and mechanical sensors, mostly based on modifications of the many setae (bristles) that project through their cuticles. Nearly all arthropods lay eggs. Arthropod hatchlings vary from miniature adults to grubs and caterpillars that lack jointed limbs and eventually undergo a total metamorphosis to produce the adult form.

The evolutionary ancestry of arthropods dates back to the Cambrian period. The group is generally regarded as monophyletic, and many analyses support the placement of arthropods with cycloneuralians (or their constituent clades) in a superphylum Ecdysozoa. Overall however, the basal relationships of Metazoa are not yet well resolved. Likewise, the relationships between various arthropod groups are still actively debated. (see more...)



Vinlandostrophia.
Brachiopods are marine animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalvemolluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection. Two major groups are recognized, articulate and inarticulate. Articulate brachiopods have toothed hinges and simple opening and closing muscles, while inarticulate brachiopods have untoothed hinges and a more complex system of muscles used to keep the two halves aligned. In a typical brachiopod a stalk-like pedicle projects from an opening in one of the valves, known as the pedicle valve, attaching the animal to the seabed. Lineages of brachiopods that have both fossil and extant taxa appeared in the early Cambrian, Ordovician, and Carboniferous periods, respectively. Other lineages have arisen and then become extinct, sometimes during severe mass extinctions. At their peak in the Paleozoic era, the brachiopods were among the most abundant filter-feeders and reef-builders, and occupied other ecological niches, including swimming in the jet-propulsion style of scallops. However, after the Permian–Triassic extinction event, brachiopods recovered only a third of their former diversity. It was often thought that brachiopods were in decline after the Permian–Triassic extinction, and were out-competed by bivalves. However, a study in 1980 found both brachiopod and bivalve species increased from the Paleozoic to modern times, but bivalves increased faster; after the Permian–Triassic extinction, brachiopods for the first time became less diverse than bivalves. (see more...)



Favosites.
Cnidaria is a phylum of animals found exclusively in aquatic and mostly marine environments. Their distinguishing feature is cnidocytes, specialized cells that they use mainly for capturing prey. Their bodies consist of mesoglea, a non-living jelly-like substance, sandwiched between two layers of epithelium. They have two basic body forms: swimming medusae and sessile polyps, both of which are radially symmetrical with mouths surrounded by tentacles that bear cnidocytes. Many cnidarian species produce colonies that are single organisms composed of medusa-like or polyp-like zooids. Cnidarians' activities are coordinated by a decentralized nerve net. Many cnidarians have complex lifecycles with asexual polyp stages and sexual medusae, but some omit either the polyp or the medusa stage. Cnidarians are classified into four main groups: the almost wholly sessile Anthozoa (sea anemones, corals, sea pens); swimming Scyphozoa (jellyfish); Cubozoa (box jellies); and Hydrozoa, a diverse group that includes all the freshwater cnidarians as well as many marine forms. Fossil cnidarians have been found in rocks formed about 580 million years ago, and other fossils show that corals may have been present shortly before 490 million years ago and diversified a few million years later. Fossils of cnidarians that do not build mineralized structures are very rare. Scientists currently think that cnidarians, ctenophores and bilaterians are more closely related to calcareous sponges than these are to other sponges, and that anthozoans are the evolutionary "aunts" or "sisters" of other cnidarians, and the most closely related to bilaterians. (see more...)



Agatized coral fossil from Michigan.
Corals are marine invertebrates in class Anthozoa of phylum Cnidaria typically living in compact colonies of many identical individual "polyps". The group includes the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton. A coral "head" is a colony of myriad genetically identical polyps. Each polyp is a spineless animal typically only a few millimeters in diameter and a few centimeters in length. A set of tentacles surround a central mouth opening. An exoskeleton is excreted near the base. Over many generations, the colony thus creates a large skeleton that is characteristic of the species. Individual heads grow by asexual reproduction of polyps. Corals also breed sexually by spawning: polyps of the same species release gametes simultaneously over a period of one to several nights around a full moon. Although some corals can catch small fish and plankton, using stinging cells on their tentacles, like those in sea anemone and jellyfish, most corals obtain the majority of their energy and nutrients from photosynthetic unicellular algae that live within the coral's tissue called zooxanthella. Such corals require sunlight and grow in clear, shallow water. Corals can be major contributors to the physical structure of the coral reefs that develop in tropical and subtropical waters, such as the enormous Great Barrier Reef off the coast of Queensland, Australia. Other corals do not have associated algae and can live in much deeper water. (see more...)



Kallidecthes.
Crustaceans (Crustacea) form a very large group of arthropods, usually treated as a subphylum, which includes such familiar animals as crabs, lobsters, crayfish, shrimp, krill and barnacles. The 67,000 described species range in size from Stygotantulus stocki at 0.1 mm (0.004 in), to the Japanese spider crabwith a leg span of up to 3.8 m (12.5 ft) and a mass of 20 kg (44 lb). Like other arthropods, crustaceans have an exoskeleton, which they moult to grow. They are distinguished from other groups of arthropods, such as insects, myriapods and chelicerates, by the possession of biramous (two-parted) limbs, and by the nauplius form of the larvae. Most crustaceans are free-living aquatic animals, but some are terrestrial (e.g. woodlice), some are parasitic (e.g. Rhizocephala, fish lice, tongue worms) and some are sessile (e.g. barnacles). The group has an extensive fossil record, reaching back to the Cambrian, and includes living fossils such as Triops cancriformis, which has existed apparently unchanged since the Triassic period. More than 10 million tons of crustaceans are produced by fishery or farming for human consumption, the majority of it being shrimp and prawns. Krill and copepods are not as widely fished, but may be the animals with the greatest biomass on the planet, and form a vital part of the food chain. The scientific study of crustaceans is known as carcinology, and a scientist who works in carcinology is a carcinologist. (see more...)



Artist's restoration of Ctenorhabdotus capulus.
Ctenophora is a phylum of marine animals characterized by "combs" consisting of cilia they use for swimming. Adults range from a few millimeters to 1.5 m (4 ft 11 in) in size. Their bodies consist of a mass of jelly, with one layer two cells thick on the outside and another lining the internal cavity. Almost all ctenophores consume tiny animal prey. The phylum has a wide range of body forms, including the egg-shaped cydippids with retractable tentacles that capture prey, the flat generally combless platyctenids, and the large-mouthed beroids, which prey on other ctenophores. Despite their soft, gelatinous bodies, fossils thought to represent ctenophores have been found in lagerstätten as far back as the early Cambrian, about 525 million years ago. The position of the ctenophores in the tree of life has long been debated, and the majority view at present, based on molecular phylogenetics, is that ctenophores are more primitive than the sponges, which are more primitive than the cnidarians and bilaterians. A recent molecular phylogenetics analysis concluded that the common ancestor of all modern ctenophores was cydippid-like, and that all the modern groups appeared relatively recently, probably after the Cretaceous–Paleogene extinction event 66 million years ago. Evidence accumulating since the 1980s indicates that the "cydippids" are not monophyletic, in other words do not include all and only the descendants of a single common ancestor, because all the other traditional ctenophore groups are descendants of various cydippids. (see more...)



Modern entoprocts.
Entoprocta is a phylum of mostly sessile marine animals, ranging from 0.1 to 7 millimetres (0.0039 to 0.2756 in) long. Mature individuals are goblet-shaped, on relatively long stalks. They have a "crown" of solid tentacles whose cilia generate water currents that draw food particles towards the mouth, and both the mouth and anus lie inside the "crown". Most families of entoprocts are colonial. Some species eject unfertilized ova into the water, while others keep their ova in brood chambers until they hatch, and some of these species use placenta-like organs to nourish the developing eggs. After hatching, the larvae swim for a short time and then settle on a surface. There they metamorphose, and the larval gut generally rotates by up to 180°, so that the mouth and anus face upwards. Both colonial and solitary species also reproduce by cloning – solitary species grow clones in the space between the tentacles and then release them when developed, while colonial ones produce new members from the stalks or from corridor-like stolons. Fossils of entoprocts are very rare, and the earliest specimens that have been identified with confidence date from the Late Jurassic. Most studies from 1996 onwards have regarded entoprocts as members of the Trochozoa, which also includes molluscs and annelids. However, a study in 2008 concluded that entoprocts are closely related to bryozoans. Recently, the Maotianshan Shales fossil,Cotyledion tylodes, has been reevaluated as being an ancient, sclerite-bearing entoproct. (see more...)



Pituriaspids.
A fish is any member of a paraphyletic group of organisms that consist of all gill-bearing aquatic craniate animals that lack limbs with digits. Included in this definition are the living hagfish, lampreys, and cartilaginous and bony fish, as well as various extinct related groups. Most fish are ectothermic ("cold-blooded"), allowing their body temperatures to vary as ambient temperatures change. Fish are abundant in most bodies of water. They can be found in nearly all aquatic environments, from high mountain streams to even hadal depths of the deepest oceans. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Because the term "fish" is defined negatively, and excludes the tetrapods (i.e., the amphibians, reptiles, birds and mammals) which descend from within the same ancestry, it is paraphyletic, and is not considered a proper grouping in systematic biology. The earliest organisms that can be classified as fish were soft-bodied chordates that first appeared during the Cambrian period. Although they lacked a true spine, they possessednotochords which allowed them to be more agile than their invertebrate counterparts. Fish would continue to evolve through the Paleozoic era, diversifying into a wide variety of forms. Many fish of the Paleozoic developed external armor that protected them from predators. The first fish with jaws appeared in the Silurian period, after which many (such as sharks) became formidable marine predators rather than just the prey of arthropods. (see more...)



Artist's restoration of Latouchella costata.
The molluscs or mollusks, compose the large phylum of invertebrate animals known as the phylum Mollusca. Around 85,000 extant species of molluscs are recognized. Molluscs are the largest marine phylum, comprising about 23% of all the named marine organisms. Numerous molluscs also live in freshwater and terrestrial habitats. They are highly diverse, not only in size and in anatomical structure, but also in behaviour and in habitat. The phylum is typically divided into 9 or 10 taxonomic classes, of which two are entirely extinct. Cephalopod molluscs, such as squid, cuttlefish and octopus, are among the most neurologically advanced of all invertebrates—and either the giant squid or the colossal squid is the largest known invertebrate species. The gastropods (snails and slugs) are by far the most numerous molluscs in terms of classified species. The scientific study of molluscs is called malacology. The three most universal features defining modern molluscs are a mantle with a significant cavity used for breathing and excretion, the presence of a radula, and the structure of the nervous system. Good evidence exists for the appearance of gastropods, cephalopods and bivalves in the Cambrian period 541 to 485.4 million years ago. However, the evolutionary history both of molluscs' emergence from the ancestral Lophotrochozoa and of their diversification into the well-known living and fossil forms are still subjects of vigorous debate among scientists. (see more...)



Vauxia fossils.
Sponges are animals of the phylum Porifera (/pɒˈrɪfərə/; meaning "pore bearer"). They are multicellular organisms that have bodies full of pores and channels allowing water to circulate through them, consisting of jelly-like mesohyl sandwiched between two thin layers of cells. Sponges have unspecialized cells that can transform into other types and that often migrate between the main cell layers and the mesohyl in the process. Sponges do not have nervous, digestive or circulatory systems. Instead, most rely on maintaining a constant water flow through their bodies to obtain food and oxygen and to remove wastes. (see more...)



Modern tunicates.
A tunicate is a marine invertebrate animal, a member of the subphylum Tunicata which is part of the Chordata, a phylum which includes all animals with dorsal nerve cords and notochords. Some tunicates live as solitary individuals but others replicate by budding and become colonies, each unit being known as a zooid. They are marine filter feeders with a water-filled, sac-like body structure and two tubular openings, known as siphons, through which they draw in and expel water. During their respiration and feeding they take in water through the incurrent (or inhalant) siphon and expel the filtered water through the excurrent (or exhalant) siphon. Most adult tunicates are sessile and are permanently attached to rocks or other hard surfaces on the ocean floor; others such as salps, doliolids and pyrosomes swim in the pelagic zone of the sea as adults. Various species are commonly known as sea squirts, sea pork, sea liver or sea tulips. The Tunicata first appear in the fossil record in the early Cambrian period. Despite their simple appearance and very different adult form, their close relationship to the vertebrates is shown by the fact that during their mobile larval stage, they possess a notochord or stiffening rod and resemble a tadpole. Their name derives from their unique outer covering or "tunic" which is formed from proteins and carbohydrates and acts as an exoskeleton. In some species it is thin, translucent and gelatinous while in others it is thick, tough and stiff. (see more...)



Life restoration of Marella, the most common animal in the Burgess Shale.
The fossils of the Burgess Shale, like the Burgess Shale itself, formed around 505 million years ago in the Mid Cambrian period. They were discovered in Canada in 1886, and Charles Doolittle Walcott collected over 60,000 specimens in a series of field trips up from 1909 to 1924. After a period of neglect from the 1930s to the early 1960s, new excavations and re-examinations of Walcott's collection resumed and paleontologists continue to discover new species. These fossils have been preserved in a distinctive style known as Burgess shale type preservation, which preserves fairly tough tissues such as cuticle as thin films and soft tissues as solid shapes. In the 1970s and early 1980s the Burgess fossils were largely regarded as evidence that the familiar phyla of animals appeared very rapidly in the Early Cambrian, in what is often called the Cambrian explosion. This view was already known to Charles Darwin, who regarded it as one of the greatest difficulties for the theory of evolution he presented in The Origin of Species. However, from the early 1980s the cladistics method of analysing "evolutionary family trees" has persuaded most researchers that many of the Burgess Shale's "weird wonders", such as Opabinia and Hallucinogenia, were evolutionary relatives of modern animal groups rather than a rapid proliferation of separate phyla, some of which were short-lived. Nevertheless there is still debate, sometimes vigorous, about the relationships between some groups of animals. (see more...)



Geologic map of Scotland.
The geology of Scotland is unusually varied for a country of its size, with a large number of differing geological features. There are three main geographical sub-divisions: the Highlands and Islands is a diverse area which lies to the north and west of the Highland Boundary Fault; the Central Lowlands is a rift valley mainly comprising Paleozoic formations; and the Southern Uplands, which lie south of the Southern Uplands Fault, are largely composed of Silurian deposits.

The existing bedrock includes very ancient Archean gneiss, metamorphic beds interspersed with granite intrusions created during the Caledonian mountain building period (the Caledonian orogeny), commercially important coal, oil and iron bearing carboniferous deposits and the remains of substantial Paleogene volcanoes. During their formation, tectonic movements created climatic conditions ranging from polar to desert to tropical and a resultant diversity of fossil remains.

Scotland has also had a role to play in many significant discoveries such as plate tectonics and the development of theories about the formation of rocks and was the home of important figures in the development of the science including James Hutton, (the "father of modern geology") Hugh Miller and Archibald Geikie. Various locations such as 'Hutton's Unconformity' at Siccar Point in Berwickshire and the Moine Thrust in the north west were also important in the development of geological science. (see more...)