# Portal:Discrete mathematics/Selected article

## Selected Article

 A labeled graph on 6 vertices and 7 edges
Informally speaking, a graph is a set of objects called points, nodes, or vertices connected by links called lines or edges. In a proper graph, which is by default undirected, a line from point A to point B is considered to be the same thing as a line from point B to point A. In a digraph, short for directed graph, the two directions are counted as being distinct arcs or directed edges. Typically, a graph is depicted in diagrammatic form as a set of dots (for the points, vertices, or nodes), joined by curves (for the lines or edges). Graphs have applications in both mathematics and computer science, and form the basic object of study in graph theory.

Applications of graph theory are generally concerned with labeled graphs and various specializations of these. Many problems of practical interest can be represented by graphs. The link structure of a website could be represented by a directed graph: the vertices are the web pages available at the website and a directed edge from page A to page B exists if and only if A contains a link to B. A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with weights, or weighted graphs, are used to represent structures in which pairwise connections have some numerical values. For example if a graph represents a road network, the weights could represent the length of each road. A digraph with weighted edges in the context of graph theory is called a network. Networks have many uses in the practical side of graph theory, network analysis (for example, to model and analyze traffic networks).

## Selected Article

 A 1-forest (a maximal pseudoforest), formed by three 1-trees

In graph theory, a pseudoforest is an undirected graph[1] in which every connected component has at most one cycle. That is, it is a system of vertices and edges connecting pairs of vertices, such that no two closed paths of consecutive edges share any vertex with each other, nor can any two such closed paths be connected to each other by a path of consecutive edges. A pseudotree is a connected pseudoforest.

The names are justified by analogy to the more commonly studied trees and forests. (A tree is a connected graph with no cycles; a forest is a disjoint union of trees.) Gabow and Tarjan[2] attribute the naming of pseudoforests to Dantzig's 1963 book on linear programming, in which pseudoforests arise in the solution of certain network flow problems.[3] Pseudoforests also form graph-theoretic models of functions and occur in several algorithmic problems. Pseudoforests are sparse graphs – they have very few edges relative to their number of vertices – and their matroid structure allows several other families of sparse graphs to be decomposed as unions of forests and pseudoforests.

 ...Archive Image credit: User:David Eppstein Read more...

## Selected Article

 Example of a four color map

The four color theorem states that given any plane separated into regions, such as a political map of the counties of a state, the regions may be colored using no more than four colors in such a way that no two adjacent regions receive the same color. Two regions are called adjacent if they share a border segment, not just a point.

It is often the case that using only three colors is inadequate. This applies already to the map with one region surrounded by three other regions (even though with an even number of surrounding countries three colors are enough) and it is not at all difficult to prove that five colors are sufficient to color a map.

The four color theorem was the first major theorem to be proven using a computer, and the proof is not accepted by all mathematicians because it would be infeasible for a human to verify by hand (see computer-aided proof). Ultimately, in order to believe the proof, one has to have faith in the correctness of the compiler and hardware executing the program used for the proof.

The lack of mathematical elegance was another factor, and to paraphrase comments of the time, "a good mathematical proof is like a poem — this is a telephone directory!"

## Selected Article

Combinatorics is a branch of pure mathematics concerning the study of discrete (and usually finite) objects. It is related to many other areas of mathematics, such as algebra, probability theory, ergodic theory and geometry, as well as to applied subjects in computer science and statistical physics. Aspects of combinatorics include "counting" the objects satisfying certain criteria (enumerative combinatorics), deciding when the criteria can be met, and constructing and analyzing objects meeting the criteria (as in combinatorial designs and matroid theory), finding "largest", "smallest", or "optimal" objects (extremal combinatorics and combinatorial optimization), and finding algebraic structures these objects may have (algebraic combinatorics).

Combinatorics is as much about problem solving as theory building, though it has developed powerful theoretical methods, especially since the later twentieth century (see the page List of combinatorics topics for details of the more recent development of the subject). One of the oldest and most accessible parts of combinatorics is graph theory, which also has numerous natural connections to other areas.

## Selected Article

In mathematics, computing, linguistics and related disciplines, an algorithm is a type of effective method in which a definite list of well-defined instructions for completing a task, when given an initial state, will proceed through a well-defined series of successive states, eventually terminating in an end-state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as probabilistic algorithms, incorporate randomness.

A partial formalization of the concept began with attempts to solve the Entscheidungsproblem (the "decision problem") that David Hilbert posed in 1928. Subsequent formalizations were framed as attempts to define "effective calculability" (Kleene 1943:274) or "effective method" (Rosser 1939:225); those formalizations included the Gödel-Herbrand-Kleene recursive functions of 1930, 1934 and 1935, Alonzo Church's lambda calculus of 1936, Emil Post's "Formulation I" of 1936, and Alan Turing's Turing machines of 1936-7 and 1939.

1. ^ The kind of undirected graph considered here is often called a multigraph or pseudograph, to distinguish it from a simple graph.
2. ^
3. ^