Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia
(Redirected from Portal:Math)

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

animation of the classic "butterfly-shaped" Lorenz attractor seen from three different perspectives
animation of the classic "butterfly-shaped" Lorenz attractor seen from three different perspectives
The Lorenz attractor is an iconic example of a strange attractor in chaos theory. This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of liquid or gas) uniformly heated from below and cooled from above. To be more specific, the figure is set in a three-dimensional coordinate system whose axes measure the rate of convection in the layer (x), the horizontal temperature variation (y), and the vertical temperature variation (z). As these quantities change over time, a path is traced out within the coordinate system reflecting a particular solution to the differential equations. Lorenz's analysis revealed that while all solutions are completely deterministic, some choices of input parameters and initial conditions result in solutions showing complex, non-repeating patterns that are highly dependent on the exact values chosen. As stated by Lorenz in his 1963 paper Deterministic Nonperiodic Flow: "Two states differing by imperceptible amounts may eventually evolve into two considerably different states". He later coined the term "butterfly effect" to describe the phenomenon. One implication is that computing such chaotic solutions to the Lorenz system (i.e., with a computer program) to arbitrary precision is not possible, as any real-world computer will have a limitation on the precision with which it can represent numerical values. The particular solution plotted in this animation is based on the parameter values used by Lorenz (σ = 10, ρ = 28, and β = 8/3, constants reflecting certain physical attributes of the fluid). Note that the animation repeatedly shows one solution plotted over a specific period of time; as previously mentioned, the true solution never exactly retraces itself. Not all solutions are chaotic, however. Some choices of parameter values result in solutions that tend toward equilibrium at a fixed point (as seen, for example, in this image). Initially developed to describe atmospheric convection, the Lorenz equations also arise in simplified models for lasers, electrical generators and motors, and chemical reactions.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

More did you know – view different entries

Did you know...
Did you know...
Showing 7 items out of 75

Selected article – show another


Mathematics department in Göttingen where Hilbert worked from 1895 until his retirement in 1930
Image credit: Daniel Schwen

David Hilbert (January 23, 1862, Wehlau, Prussia–February 14, 1943, Göttingen, Germany) was a German mathematician, recognized as one of the most influential mathematicians of the 19th and early 20th centuries. He established his reputation as a great mathematician and scientist by inventing or developing a broad range of ideas, such as invariant theory, the axiomization of geometry, and the notion of Hilbert space, one of the foundations of functional analysis. Hilbert and his students supplied significant portions of the mathematic infrastructure required for quantum mechanics and general relativity. He is one of the founders of proof theory, mathematical logic, and the distinction between mathematics and metamathematics, and warmly defended Cantor's set theory and transfinite numbers. A famous example of his world leadership in mathematics is his 1900 presentation of a set of problems that set the course for much of the mathematical research of the 20th century. (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics


Algebra Analysis Geometry and topology Applied mathematics
Source

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

Related portals

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals

  1. ^ Coxeter et al. (1999), p. 30–31; Wenninger (1971), p. 65.