Post-Hartree–Fock

From Wikipedia, the free encyclopedia
  (Redirected from Post Hartree–Fock)
Jump to: navigation, search

In computational chemistry, post-Hartree–Fock[1][2] methods are the set of methods developed to improve on the Hartree–Fock (HF), or self-consistent field (SCF) method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are only averaged.

Details[edit]

In general, the SCF procedure makes several assumptions about the nature of the multi-body Schrödinger equation and its set of solutions:

For the great majority of systems under study, in particular for excited states and processes such as molecular dissociation reactions, the fourth item is by far the most important. As a result, the term post-Hartree–Fock method is typically used for methods of approximating the electron correlation of a system.

Usually, post-Hartree–Fock methods give more accurate results than Hartree–Fock calculations, although the added accuracy comes with the price of added computational cost.

Post-Hartree–Fock methods[edit]

Related methods[edit]

Methods that use more than one determinant are not strictly post-Hartree–Fock methods, as they use a single determinant as reference, but they often use similar perturbation, or configuration interaction methods to improve the description of electron correlation. These methods include:

References[edit]

  1. ^ Cramer, Christopher J. (2002). Essentials of Computational Chemistry. John Wiley & Sons. ISBN 0-470-09182-7. 
  2. ^ Jensen, Frank (1999). Introduction to Computational Chemistry 2nd edition. John Wiley & Sons. ISBN 0-470-01187-4. 
  3. ^ David Maurice & Martin Head-Gordon (May 10, 1999). "Analytical second derivatives for excited electronic states using the single excitation configuration interaction method: theory and application to benzo[a]pyrene and chalcone". Molecular Physics. Taylor & Francis. 96 (10): 1533–1541. Bibcode:1999MolPh..96.1533M. doi:10.1080/00268979909483096. 
  4. ^ Martin Head-Gordon; Rudolph J. Rico; Manabu Oumi & Timothy J. Lee (1994). "A doubles correction to electronic excited states from configuration interaction in the space of single substitutions". Chemical Physics Letters. Elsevier. 219 (1–2): 21–29. Bibcode:1994CPL...219...21H. doi:10.1016/0009-2614(94)00070-0. 
  5. ^ George D. Purvis & Rodney J. Bartlett (1982). "A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples". The Journal of Chemical Physics. The American Institute of Physics. 76 (4): 1910–1919. Bibcode:1982JChPh..76.1910P. doi:10.1063/1.443164. 
  6. ^ Krishnan Raghavachari; Gary W. Trucks; John A. Pople & Martin Head-Gordon (March 24, 1989). "A fifth-order perturbation comparison of electron correlation theories". Chemical Physics Letters. Elsevier Science. 157 (6): 479–483. Bibcode:1989CPL...157..479R. doi:10.1016/S0009-2614(89)87395-6. 
  7. ^ Troy Van Voorhis & Martin Head-Gordon (June 19, 2001). "Two-body coupled cluster expansions". The Journal of Chemical Physics. The American Institute of Physics. 115 (11): 5033–5041. Bibcode:2001JChPh.115.5033V. doi:10.1063/1.1390516. 
  8. ^ H. D. Meyer; U. Manthe & L. S. Cederbaum (1990). "The multi-configurational time-dependent Hartree approach". Chem. Phys. Lett. 165 (73). doi:10.1016/0009-2614(90)87014-I. 
  9. ^ Chr. Møller & M. S. Plesset (October 1934). "Note on an Approximation Treatment form Many-Electron Systems". Physical Review. The American Physical Society. 46 (7): 618–622. Bibcode:1934PhRv...46..618M. doi:10.1103/PhysRev.46.618. 
  10. ^ Krishnan Raghavachari & John A. Pople (February 22, 1978). "Approximate fourth-order perturbation theory of the electron correlation energy". International Journal of Quantum Chemistry. Wiley InterScience. 14 (1): 91–100. doi:10.1002/qua.560140109. 
  11. ^ John A. Pople; Martin Head‐Gordon & Krishnan Raghavachari (1987). "Quadratic configuration interaction. A general technique for determining electron correlation energies". The Journal of Chemical Physics. American Institute of Physics. 87 (10): 5968–35975. Bibcode:1987JChPh..87.5968P. doi:10.1063/1.453520. 
  12. ^ Larry A. Curtiss; Krishnan Raghavachari; Gary W. Trucks & John A. Pople (February 15, 1991). "Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds". The Journal of Chemical Physics. The American Institute of Physics. 94 (11): 7221–7231. Bibcode:1991JChPh..94.7221C. doi:10.1063/1.460205. 
  13. ^ Larry A. Curtiss; Krishnan Raghavachari; Paul C. Redfern; Vitaly Rassolov & John A. Pople (July 22, 1998). "Gaussian-3 (G3) theory for molecules containing first and second-row atoms". The Journal of Chemical Physics. The American Institute of Physics. 109 (18): 7764–7776. Bibcode:1998JChPh.109.7764C. doi:10.1063/1.477422. 
  14. ^ William S. Ohlinger; Philip E. Klunzinger; Bernard J. Deppmeier & Warren J. Hehre (January 2009). "Efficient Calculation of Heats of Formation". The Journal of Physical Chemistry A. ACS Publications. 113 (10): 2165–2175. PMID 19222177. doi:10.1021/jp810144q. 

Further reading[edit]

  • Jensen, F. (1999). Introduction to Computational Chemistry. New York: John Wiley & Sons. ISBN 0471980854.