Prebiotic (nutrition)

From Wikipedia, the free encyclopedia
  (Redirected from Prebiotics)
Jump to: navigation, search

Prebiotics is a general term to refer to substances that induce the growth or activity of microorganisms (e.g., bacteria and fungi) that contribute to the well-being of their host. The most common example is in the gastrointestinal tract, where prebiotics can alter the composition of organisms in the gut microbiome. However, in principle it is a more general term that can refer to other areas of the body as well. For example, certain hand moisturizers have been proposed to act as prebiotics to improve the activity or composition of the skin microbiota.[1]

In diet, prebiotics are typically non-digestible fiber compounds that pass undigested through the upper part of the gastrointestinal tract and stimulate the growth or activity of advantageous bacteria that colonize the large bowel by acting as substrate for them. They were first identified and named by Marcel Roberfroid in 1995.[2] As a functional food component, prebiotics, like probiotics, are conceptually intermediate between foods and drugs. Depending on the jurisdiction, they typically receive an intermediate level of regulatory scrutiny, in particular of the health claims made concerning them.


Roberfroid offered a refined definition in the March 2007 Journal of Nutrition[3] stating: "A prebiotic is a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well-being and health."

Additionally, in his 2007 revisit of prebiotics, Roberfroid stated that only two particular prebiotics then fully met this definition: trans-galactooligosaccharide and inulin.[4] Other dietary fibers also fit the definition of prebiotics as developed by Roberfroid such as Larch arabinogalactin (LAG),[5] resistant starch,[6] pectin,[7] beta-glucans,[8] and Xylooligosaccharides (XOS).[9]

Researchers now also focus on the distinction between short-chain, long-chain, and full-spectrum prebiotics. "Short-chain" prebiotics, e.g., oligofructose, contain 2–8 links per saccharide molecule and are typically fermented more quickly in the ascending colon of the colon providing nourishment to the bacteria in that area. Longer-chain prebiotics, e.g., inulin, contain 9-64 links per saccharide molecule, and tend to be fermented more slowly, nourishing bacteria predominantly in the descending colon. Full-spectrum prebiotics provide the full range of molecular link-lengths from 2-64 links per molecule, and nourish bacteria throughout the colon, e.g., Oligofructose-Enriched Inulin (OEI). The majority of research done on prebiotics is based on full-spectrum prebiotics, typically using OEI as the research substance.[10][11][12][13][14]


The prebiotic definition does not emphasize a specific bacterial group. Generally, however, it is assumed that a prebiotic should increase the number or activity of bifidobacteria and lactic acid bacteria. The importance of the bifidobacteria and the lactic acid bacteria (LABs) is that these groups of bacteria may have several beneficial effects on the host, especially in terms of improving digestion (including enhancing mineral absorption[15]) and the effectiveness and intrinsic strength of the immune system.[16] A product that stimulates bifidobacteria is considered a bifidogenic factor. Some prebiotics may thus also act as a bifidogenic factor and vice versa, but the two concepts are not identical.[17]


Top 10 Foods Containing Prebiotics
Food Prebiotic Fiber Content by Weight
Gum Arabic 85%
Raw, Dry Chicory Root 64.6%
Raw, Dry Jerusalem Artichoke 31.5%
Raw, Dry Dandelion Greens 24.3%
Raw, Dry Garlic 17.5%
Raw, Dry Leek 11.7%
Raw, Dry Onion 8.6%
Raw Asparagus 5%
Raw Wheat bran 5%
Whole Wheat flour, Cooked 4.8%
Raw Banana 1%

While there is no broad consensus on an ideal daily serving of prebiotics, recommendations typically range from 4 to 8 grams (0.14–0.28 oz) for general digestive health support, to 15 grams (0.53 oz) or more for those with active digestive disorders. Given an average 6 grams (0.21 oz) serving, below are the amounts of prebiotic foods required to achieve a daily serving of prebiotic fiber:

Food Amount of food to achieve 6 g serving of prebiotics
Raw Chicory Root 9.3 g (0.33 oz)
Raw Jerusalem Artichoke 19 g (0.67 oz)
Raw Dandelion Greens 24.7 g (0.87 oz)
Raw Garlic 34.3 g (1.21 oz)
Raw Leek 51.3 g (1.81 oz)
Raw Onion 69.8 g (2.46 oz)
Cooked Onion 120 g (4.2 oz)
Raw Asparagus 120 g (4.2 oz)
Raw Wheat Bran 120 g (4.2 oz)
Whole Wheat Flour, Cooked 125 g (4.4 oz)
Raw Banana 600 g (1.3 lb)


Preliminary research has demonstrated potential effects on calcium and other mineral absorption,[19] immune system effectiveness,[20][21] bowel acidity, reduction of colorectal cancer risk,[22] inflammatory bowel disease (Crohn's disease or ulcerative colitis)[23] hypertension[24] and defecation frequency.[25] Prebiotics may be effective in decreasing the number of infectious episodes needing antibiotics and the total number of infections in children aged 0–24 months.[26]

While research demonstrates that prebiotics lead to increased production of short-chain fatty acids (SCFA),[27] more research is required to establish a direct causal connection. Prebiotics may be beneficial to inflammatory bowel disease or Crohn's disease through production of SCFA as nourishment for colonic walls, and mitigation of ulcerative colitis symptoms.[28]

The immediate addition of substantial quantities of prebiotics to the diet may result in an increase in fermentation, leading to increased gas production, bloating or bowel movement.[29] Production of SCFA and fermentation quality are reduced during long-term diets of low fiber intake.[30] Until bacterial flora are gradually established to rehabilitate or restore intestinal bacteria, nutrient absorption may be impaired and colonic transit time temporarily increased with an immediate addition of higher prebiotic intake.[29][31]

Genetic modification[edit]

Genetically modified plants have been created in research labs with upregulated inulin production.[32][33][34]

See also[edit]


  1. ^ Schloss, Patrick D. (1 October 2014). "Microbiology: An integrated view of the skin microbiome". Nature 514 (7520): 44–45. doi:10.1038/514044a. 
  2. ^ Gibson GR, Roberfroid MB (Jun 1995). "Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics". J Nutr. 125 (6): 1401–1412. PMID 7782892. 
  3. ^ Roberfroid MB (March 2007). "Prebiotics: The Concept Revisited". J Nutr. 137 (3 Suppl 2): 830S–7S. PMID 17311983. 
  4. ^ Roberfroid M (2007). "Prebiotics: The Concept Revisited". J Nutr. 137 (3 Suppl 2): 830S–7S. PMID 17311983. Presently there are only 2 food ingredients that fulfill these criteria, i.e., inulin and trans-galactooligosaccharides (TOS). 
  5. ^ Kelly, G. S. (1999-04-01). "Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide". Alternative Medicine Review: A Journal of Clinical Therapeutic 4 (2): 96–103. ISSN 1089-5159. PMID 10231609. 
  6. ^ Zaman, Siti A.; Sarbini, Shahrul R. (2015-07-07). "The potential of resistant starch as a prebiotic". Critical Reviews in Biotechnology: 1–7. doi:10.3109/07388551.2014.993590. ISSN 1549-7801. PMID 25582732. 
  7. ^ Gómez, Belén; Gullón, Beatriz; Remoroza, Connie; Schols, Henk A.; Parajó, Juan C.; Alonso, José L. (2014-10-08). "Purification, characterization, and prebiotic properties of pectic oligosaccharides from orange peel wastes". Journal of Agricultural and Food Chemistry 62 (40): 9769–9782. doi:10.1021/jf503475b. ISSN 1520-5118. PMID 25207862. 
  8. ^ Arena, Mattia P.; Caggianiello, Graziano; Fiocco, Daniela; Russo, Pasquale; Torelli, Michele; Spano, Giuseppe; Capozzi, Vittorio (2014-02-20). "Barley β-Glucans-Containing Food Enhances Probiotic Performances of Beneficial Bacteria". International Journal of Molecular Sciences 15 (2): 3025–3039. doi:10.3390/ijms15023025. ISSN 1422-0067. PMC 3958897. PMID 24562330. 
  9. ^ Jain, Ira; Kumar, Vikash; Satyanarayana, T. (2015-03-01). "Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits". Indian Journal of Experimental Biology 53 (3): 131–142. ISSN 0019-5189. PMID 25872243. 
  10. ^ Kleessen B, Hartmann L, Blaut M (2001). "Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora". British Journal of Nutrition 86 (2): 291–300. doi:10.1079/BJN2001403. PMID 11502244. 
  11. ^ Femia AP, Luceri C, Dolara P, Giannini A, Biggeri A, Salvadori M, Clune Y, Collins KJ, Paglierani M, Caderni G (Nov 2002). "Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats". Carcinogenesis 23 (11): 1953–1960. doi:10.1093/carcin/23.11.1953. PMID 12419846. 
  12. ^ Hughes R, Rowland IR (Jan 2001). "Stimulation of apoptosis by two prebiotic chicory fructans in the rat colon". Carcinogenesis 22 (1): 43–47. doi:10.1093/carcin/22.1.43. PMID 11159739. 
  13. ^ Bouhnik Y, Vahedi K, Achour L, Attar A, Salfati J, Pochart P, Marteau P, Flourié B, Bornet F, Rambaud JC (Jan 1999). "Short-chain fructo-oligosaccharide administration dose-dependently increases fecal bifidobacteria in healthy humans". J Nutr. 129 (1): 113–116. PMID 9915885. 
  14. ^ Tahiri M, Tressol JC, Arnaud J, Bornet F, Bouteloup-Demange C, Feillet-Coudray C, Ducros V, Pépin D, Brouns F, Rayssiguier AM, Coudray C (Nov 2001). "Five-week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women". J Bone Miner Res. 16 (11): 2152–2160. doi:10.1359/jbmr.2001.16.11.2152. PMID 11697813. 
  15. ^ Coxam V (Nov 2007). "Current data with inulin-type fructans and calcium, targeting bone health in adults". J Nutr. 137 (11 Suppl): 2527S–2533S. PMID 17951497. 
  16. ^ Seifert S, Watzl B (Nov 2007). "Inulin and oligofructose: review of experimental data on immune modulation". J Nutr. 137 (11 Suppl): 2563S–2567S. PMID 17951503. 
  17. ^ "Prebiotics". Wageningen University. 
  18. ^ a b Moshfegh AJ, Friday JE, Goldman JP, Ahuja JK (July 1999). "Presence of inulin and oligofructose in the diets of Americans". Journal of Nutrition 129 (7 Suppl): 1407S–1411S. PMID 10395608. 
  19. ^ Scholz-Ahrens KE, Schrezenmeir J (Nov 2007). "Inulin and oligofructose and mineral metabolism: the evidence from animal trials". J Nutr. 137 (11 Suppl): 2513S–2523S. PMID 17951495. 
  20. ^ Lomax AR, Calder PC (Mar 2009). "Prebiotics, immune function, infection and inflammation: a review of the evidence". Br J Nutr. 101 (5): 633–658. doi:10.1017/S0007114508055608. PMID 18814803. 
  21. ^ Lohner S, Küllenberg D, Antes G, Decsi T, Meerpohl JJ (2014). "Prebiotics in healthy infants and children for prevention of acute infectious diseases: a systematic review and meta-analysis". Nutr Rev 72 (8): 523–31. doi:10.1111/nure.12117. PMID 24903007. 
  22. ^ Geier MS, Butler RN, Howarth GS (Oct 2006). "Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer?". Cancer Biol Ther. 5 (10): 1265–1269. doi:10.4161/cbt.5.10.3296. PMID 16969130. 
  23. ^ Hedin C, Whelan K, Lindsay JO (Aug 2007). "Evidence for the use of probiotics and prebiotics in inflammatory bowel disease: a review of clinical trials". Proc Nutr Soc. 66 (3): 307–315. doi:10.1017/S0029665107005563. PMID 17637082. 
  24. ^ Yeo SK, Ooi LG, Lim TJ, Liong MT (2009). "Antihypertensive properties of plant-based prebiotics". Int J Mol Sci 10 (8): 3517–30. doi:10.3390/ijms10083517. PMID 20111692. 
  25. ^ Roberfroid M, et al. (2010). "Prebiotic effects: metabolic and health benefits". Br J Nutr 104 (Suppl 2): S1–63. doi:10.1017/S0007114510003363. PMID 20920376. 
  26. ^ Lohner, S.; Küllenberg, D.; Antes, G.; Decsi, T.; Meerpohl, JJ. (Aug 2014). "Prebiotics in healthy infants and children for prevention of acute infectious diseases: a systematic review and meta-analysis.". Nutr Rev 72 (8): 523–31. doi:10.1111/nure.12117. PMID 24903007. 
  27. ^ Macfarlane S, Macfarlane GT, Cummings JH (Sep 2006). "Review article: prebiotics in the gastrointestinal tract". Aliment Pharmacol Ther 24 (5): 701–714. doi:10.1111/j.1365-2036.2006.03042.x. PMID 16918875. 
  28. ^ Guarner F (2005). "Inulin and oligofructose: impact on intestinal diseases and disorders". Br J Nutr 93 (Suppl 1): S61–5. doi:10.1079/BJN20041345. PMID 15877897. 
  29. ^ a b Marteau P, Seksik P (2004). "Tolerance of probiotics and prebiotics". J Clin Gastroenterol 38 (Suppl 6): S67–9. PMID 15220662. 
  30. ^ El Oufir L, Flourié B, Bruley des Varannes S, Barry JL, Cloarec D, Bornet F, Galmiche JP (Jun 1996). "Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans". Gut. 38 (6): 870–877. doi:10.1136/gut.38.6.870. PMC 1383195. PMID 8984026. 
  31. ^ Givson GR, Willems A, Reading S, Collins MD (1996). "Fermentation of non-digestible oligosaccharides by human colonic bacteria". Symposium 2. Proceedings of the Nutrition Society, 55:899–912.
  32. ^ Ritsema T, Smeekens SC (2003). "Engineering fructan metabolism in plants". J Plant Physiol 160 (7): 811–820. doi:10.1078/0176-1617-01029. PMID 12940548. 
  33. ^ Weyens G, Ritsema T, Van Dun K, Meyer D, Lommel M, Lathouwers J, Rosquin I, Denys P, Tossens A, Nijs M, Turk S, Gerrits N, Bink S, Walraven B, Lefèbvre M, Smeekens S (2004). "Production of tailor-made fructans in sugar beet by expression of onion fructosyltransferase genes". Plant Biotechnol J 2 (4): 321–327. doi:10.1111/j.1467-7652.2004.00074.x. PMID 17134393. 
  34. ^ Peppelenbosch MP, Ferreira CV (2009). "Immunology of pre- and probiotic supplementation". Br J Nutr. 101 (1): 2–4. doi:10.1017/S0007114508020746. PMID 18577301. 

Further reading[edit]

  • Frank W. Jackson, "PREbiotics, not Probiotics". December 2, 2013, Jacksong GI Medical. ISBN 978-0991102709.

External links[edit]