Primitive element (finite field)

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In field theory, a primitive element of a finite field GF(q) is a generator of the multiplicative group of the field. In other words, is called a primitive element if it is a primitive (q−1)th root of unity in GF(q); this means that all the non-zero elements of can be written as for some (positive) integer .

For example, 2 is a primitive element of the field GF(3) and GF(5), but not of GF(7) since it generates the cyclic subgroup {2, 4, 1} of order 3; however, 3 is a primitive element of GF(7). The minimal polynomial of a primitive element is a primitive polynomial.


Number of primitive elements[edit]

The number of primitive elements in a finite field GF(q) is φ(q − 1), where φ(m) is Euler's totient function, which counts the number of elements less than or equal to m which are relatively prime to m. This can be proved by using the theorem that the multiplicative group of a finite field GF(q) is cyclic of order q − 1, and the fact that a finite cyclic group of order m contains φ(m) generators.

See also[edit]


External links[edit]