Probenecid

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Jytdog (talk | contribs) at 17:57, 23 May 2016 (Undid revision 721714593 by 27.63.151.53 (talk) unsourced). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Probenecid
Clinical data
Trade namesProbalan
AHFS/Drugs.comMonograph
MedlinePlusa682395
Routes of
administration
oral
ATC code
Pharmacokinetic data
Protein binding75-95%
Elimination half-life2-6 hours (dose: 0.5-1 g)
Excretionrenal (77-88%)
Identifiers
  • 4-(dipropylsulfamoyl)benzoic acid
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEMBL
CompTox Dashboard (EPA)
ECHA InfoCard100.000.313 Edit this at Wikidata
Chemical and physical data
FormulaC13H19NO4S
Molar mass285.36 g/mol g·mol−1
3D model (JSmol)
  • O=S(=O)(N(CCC)CCC)c1ccc(C(=O)O)cc1
  • InChI=1S/C13H19NO4S/c1-3-9-14(10-4-2)19(17,18)12-7-5-11(6-8-12)13(15)16/h5-8H,3-4,9-10H2,1-2H3,(H,15,16) checkY
  • Key:DBABZHXKTCFAPX-UHFFFAOYSA-N checkY
  (verify)

Probenecid, also sold under the brandname Probalan, is a medication that increases uric acid excretion in the urine. It is primarily used in treating gout and hyperuricemia.

Probenecid was developed as an alternative to caronamide[1] to competitively inhibit renal excretion of some drugs, thereby increasing their plasma concentration and prolonging their effects.

Medical uses

Probenecid is primarily used to treat gout and hyperuricemia.

Probenecid is sometimes used to increase the concentration of some antibiotics. Specifically a small amount of evidence supports the use of intravenous cefazolin once rather than three times a day when it is combined with probenecid.[2]

It has also found use as a masking agent,[3] potentially helping athletes using performance-enhancing substances to avoid detection by drug tests.

Drug interactions

Some of the important clinical interactions of probenecid include those with captopril, indomethacin, ketoprofen, ketorolac, naproxen, cephalosporins, quinolones, penicillins, methotrexate, zidovudine, ganciclovir, lorazepam and acyclovir. In all these interactions, the excretion of these drugs is reduced due to probenecid.

Pharmacology

Probenecid probably has several pharmacological targets, including blocking pannexins.[4] Probenecid is also useful in the treatment of gout where the mechanism of action is believed to be focused on the kidney. Probenecid interferes with the kidneys' organic anion transporter (OAT), which reclaims uric acid from the urine and returns it to the plasma.[5] If probenecid (an organic acid) is present, the OAT binds preferentially to it (instead of to uric acid), preventing reabsorption of the uric acid. Hence, the urine retains more uric acid, lowering uric acid concentration in the plasma. (This is a good example of a medical usage for competition between substrates transported across cell membranes).

Pharmacokinetics

In the kidneys, probenecid is filtered at the glomerulus, secreted in the proximal tubule and reabsorbed in the distal tubule.

History

During World War II, probenecid was used to extend limited supplies of penicillin.[6]

See also

References

  1. ^ MASON RM (June 1954). "Studies on the Effect of Probenecid ('Benemid') in Gout". Ann. Rheum. Dis. 13 (2): 120–30. doi:10.1136/ard.13.2.120. PMC 1030399. PMID 13171805.
  2. ^ Cox, VC; Zed, PJ (March 2004). "Once-daily cefazolin and probenecid for skin and soft tissue infections". The Annals of pharmacotherapy. 38 (3): 458–63. doi:10.1345/aph.1d251. PMID 14970368.
  3. ^ Morra V, Davit P, Capra P, Vincenti M, Di Stilo A, Botrè F (December 2006). "Fast gas chromatographic/mass spectrometric determination of diuretics and masking agents in human urine: Development and validation of a productive screening protocol for antidoping analysis". J Chromatogr A. 1135 (2): 219–29. doi:10.1016/j.chroma.2006.09.034. PMID 17027009.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Silverman W, Locovei S, Dahl G (September 2008). "Probenecid, a gout remedy, inhibits pannexin 1 channels". Am. J. Physiol., Cell Physiol. 295 (3): C761–7. doi:10.1152/ajpcell.00227.2008. PMC 2544448. PMID 18596212.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. ^ Hsyu PH, Gisclon LG, Hui AC, Giacomini KM (January 1988). "Interactions of organic anions with the organic cation transporter in renal BBMV". Am. J. Physiol. 254 (1 Pt 2): F56–61. PMID 2962517.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. ^ Butler D (2005). "Wartime tactic doubles power of scarce bird-flu drug". Nature. 438 (7064): 6. doi:10.1038/438006a. PMID 16267514.