Progesterone receptor

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Progesterone receptor
Protein PGR PDB 1a28.png
PDB rendering based on 1a28.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols PGR ; NR3C3; PR
External IDs OMIM607311 MGI97567 HomoloGene713 IUPHAR: 627 ChEMBL: 208 GeneCards: PGR Gene
RNA expression pattern
PBB GE PGR 208305 at tn.png
More reference expression data
Species Human Mouse
Entrez 5241 18667
Ensembl ENSG00000082175 ENSMUSG00000031870
UniProt P06401 n/a
RefSeq (mRNA) NM_000926 NM_008829
RefSeq (protein) NP_000917 NP_032855
Location (UCSC) Chr 11:
101.03 – 101.13 Mb
Chr 9:
8.9 – 8.97 Mb
PubMed search [1] [2]

The progesterone receptor (PR, also known as NR3C3 or nuclear receptor subfamily 3, group C, member 3), is a protein found inside cells. It is activated by the steroid hormone progesterone.

In humans, PR is encoded by a single PGR gene residing on chromosome 11q22,[1][2][3] it has two main forms, A and B, that differ in their molecular weight.[4][5][6]


Progesterone is necessary to induce the progesterone receptors. When no binding hormone is present the carboxyl terminal inhibits transcription. Binding to a hormone induces a structural change that removes the inhibitory action. Progesterone antagonists prevent the structural reconfiguration.

After progesterone binds to the receptor, restructuring with dimerization follows and the complex enters the nucleus and binds to DNA. There transcription takes place, resulting in formation of messenger RNA that is translated by ribosomes to produce specific proteins.


Progesterone receptor, N-terminal
Symbol Progest_rcpt_N
Pfam PF02161
InterPro IPR000128

In common with other steroid receptors, the progesterone receptor has a N-terminal regulatory domain, a DNA binding domain, a hinge section, and a C-terminal ligand binding domain. A special transcription activation function (TAF), called TAF-3, is present in the progesterone receptor-B, in a B-upstream segment (BUS) at the amino acid terminal. This segment is not present in the receptor-A.


As demonstrated in progesterone receptor-deficient mice, the physiological effects of progesterone depend completely on the presence of the human progesterone receptor (hPR), a member of the steroid-receptor superfamily of nuclear receptors. The single-copy human (hPR) gene uses separate promoters and translational start sites to produce two isoforms, hPR-A and -B, which are identical except for an additional 165 amino acids present only in the N terminus of hPR-B.[7] Although hPR-B shares many important structural domains as hPR-A, they are in fact two functionally distinct transcription factors, mediating their own response genes and physiological effects with little overlap. Selective ablation of PR-A in a mouse model, resulting in exclusive production of PR-B, unexpectedly revealed that PR-B contributes to, rather than inhibits, epithelial cell proliferation both in response to estrogen alone and in the presence of progesterone and estrogen. These results suggest that in the uterus, the PR-A isoform is necessary to oppose estrogen-induced proliferation as well as PR-B-dependent proliferation.

Functional polymorphisms[edit]

Six variable sites, including four polymorphisms and five common haplotypes have been identified in the human PR gene .[8] One promoter region polymorphism, +331G/A, creates a unique transcription start site. Biochemical assays showed that the +331G/A polymorphism increases transcription of the PR gene, favoring production of hPR-B in an Ishikawa endometrial cancer cell line.[9]

Several studies have now shown no association between progesterone receptor gene +331G/A polymorphisms and breast or endometrial cancers.[10][11] However, these follow-up studies lacked the sample size and statistical power to make any definitive conclusions, due to the rarity of the +331A SNP. It is currently unknown which if any polymorphisms in this receptor is of significance to cancer.

Biological role[edit]

Knockout mice of the PR have been found to have severely impaired lobuloalveolar development of the mammary glands[12] as well as delayed but otherwise normal mammary ductal development at puberty.[13][14]


Progesterone receptor antagonists work as antiprogestins. The main example is mifepristone. Selective progesterone receptor modulators may also have more or less antagonist activity. Additional PR antagonists include: onapristone (ZK98299), lonaprisan (ZK230211, BAY86-5044), APR19, EC304, WAY-255348, ORG31710, asoprisnil (J867), telapristone (Proellex, CDB-4124), and CDB-2914 (ulipristal acetates).[15]


Progesterone receptor has been shown to interact with:

See also[edit]


  1. ^ Misrahi M, Atger M, d'Auriol L, Loosfelt H, Meriel C, Fridlansky F, Guiochon-Mantel A, Galibert F, Milgrom E (March 1987). "Complete amino acid sequence of the human progesterone receptor deduced from cloned cDNA". Biochem. Biophys. Res. Commun. 143 (2): 740–8. doi:10.1016/0006-291X(87)91416-1. PMID 3551956. 
  2. ^ Law ML, Kao FT, Wei Q, Hartz JA, Greene GL, Zarucki-Schulz T, Conneely OM, Jones C, Puck TT, O'Malley BW (May 1987). "The progesterone receptor gene maps to human chromosome band 11q13, the site of the mammary oncogene int-2". Proc. Natl. Acad. Sci. U.S.A. 84 (9): 2877–81. doi:10.1073/pnas.84.9.2877. PMC 304763. PMID 3472240. 
  3. ^, Gene: ESR1 (ENSG00000091831)
  4. ^ Gadkar-Sable S, Shah C, Rosario G, Sachdeva G, Puri C (2005). "Progesterone receptors: various forms and functions in reproductive tissues". Front. Biosci. 10: 2118–30. doi:10.2741/1685. PMID 15970482. 
  5. ^ Kase, Nathan G.; Speroff, Leon; Glass, Robert L. (1999). Clinical gynecologic endocrinology and infertility. Hagerstown, MD: Lippincott Williams & Wilkins. ISBN 0-683-30379-1. 
  6. ^ Fritz, Marc A.; Speroff, Leon (2005). Clinical gynecologic endocrinology and infertility. Hagerstown, MD: Lippincott Williams & Wilkins. ISBN 0-7817-4795-3. 
  7. ^ Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P (1990). "Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B". EMBO J. 9 (5): 1603–14. PMC 551856. PMID 2328727. 
  8. ^ Terry KL, De Vivo I, Titus-Ernstoff L, Sluss PM, Cramer DW (March 2005). "Genetic variation in the progesterone receptor gene and ovarian cancer risk". Am. J. Epidemiol. 161 (5): 442–51. doi:10.1093/aje/kwi064. PMC 1380205. PMID 15718480. 
  9. ^ De Vivo I, Huggins GS, Hankinson SE, Lescault PJ, Boezen M, Colditz GA, Hunter DJ (September 2002). "A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk". Proc. Natl. Acad. Sci. U.S.A. 99 (19): 12263–8. doi:10.1073/pnas.192172299. PMC 129433. PMID 12218173. 
  10. ^ Feigelson HS, Rodriguez C, Jacobs EJ, Diver WR, Thun MJ, Calle EE (2004). "No association between the progesterone receptor gene +331G/A polymorphism and breast cancer". Cancer Epidemiol. Biomarkers Prev. 13 (6): 1084–5. PMID 15184270. 
  11. ^ Dossus L, Canzian F, Kaaks R, Boumertit A, Weiderpass E (2006). "No association between progesterone receptor gene +331G/A polymorphism and endometrial cancer". Cancer Epidemiol. Biomarkers Prev. 15 (7): 1415–6. doi:10.1158/1055-9965.EPI-06-0215. PMID 16835347. 
  12. ^ Macias H, Hinck L (2012). "Mammary gland development". Wiley Interdiscip Rev Dev Biol 1 (4): 533–57. doi:10.1002/wdev.35. PMC 3404495. PMID 22844349. 
  13. ^ Hilton, Heidi N; Graham, J Dinny; Clarke, Christine L (2015). "Progesterone regulation of proliferation in the normal human breast and in breast cancer: a tale of two scenarios?". Molecular Endocrinology: me.2015–1152. doi:10.1210/me.2015-1152. ISSN 0888-8809. 
  14. ^ Aupperlee MD, Leipprandt JR, Bennett JM, Schwartz RC, Haslam SZ (2013). "Amphiregulin mediates progesterone-induced mammary ductal development during puberty". Breast Cancer Res. 15 (3): R44. doi:10.1186/bcr3431. PMC 3738150. PMID 23705924. 
  15. ^ Knutson TP, Lange CA (2014). "Tracking progesterone receptor-mediated actions in breast cancer". Pharmacol. Ther. 142 (1): 114–25. doi:10.1016/j.pharmthera.2013.11.010. PMID 24291072. 
  16. ^ Zhang XL, Zhang D, Michel FJ, Blum JL, Simmen FA, Simmen RC (June 2003). "Selective interactions of Kruppel-like factor 9/basic transcription element-binding protein with progesterone receptor isoforms A and B determine transcriptional activity of progesterone-responsive genes in endometrial epithelial cells". J. Biol. Chem. 278 (24): 21474–82. doi:10.1074/jbc.M212098200. PMID 12672823. 
  17. ^ Giangrande PH, Kimbrel EA, Edwards DP, McDonnell DP (May 2000). "The opposing transcriptional activities of the two isoforms of the human progesterone receptor are due to differential cofactor binding". Mol. Cell. Biol. 20 (9): 3102–15. doi:10.1128/MCB.20.9.3102-3115.2000. PMC 85605. PMID 10757795. 
  18. ^ Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ, O'Malley BW (February 1999). "The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily". Mol. Cell. Biol. 19 (2): 1182–9. PMC 116047. PMID 9891052. 

Further reading[edit]

External links[edit]

This article incorporates text from the public domain Pfam and InterPro IPR000342