Pseudopeptidoglycan

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Pseudopeptidoglycan (also known as pseudomurein[1]) is a major cell wall component of some Archaea that differs from bacterial peptidoglycan in chemical structure, but resembles bacterial peptidoglycan in function and physical structure. The basic components are N-acetylglucosamine and N-acetyltalosaminuronic acid (peptidoglycan has N-acetylmuramic acid instead), which are linked by β-1,3-glycosidic bonds.

Lysozyme, a host defense mechanism present in human secretions (e.g. saliva and tears), is ineffective against organisms with pseudopeptidoglycan cell walls. Lysozyme can break β-1,4-glycosidic bonds to degrade peptidoglycan; however, pseudopeptidoglycan has β-1,3-glycosidic bonds, rendering lysozyme useless.

Pseudomurein can be degraded by pseudomurein endoisopeptidase found in two prophages.[2]

See also[edit]

References[edit]

  1. ^ White, David. (1995) The Physiology and Biochemistry of Prokaryotes, pages 6, 12-21. (Oxford: Oxford University Press). ISBN 0-19-508439-X.
  2. ^ Visweswaran, Ganesh Ram R.; Dijkstra, Bauke W.; Kok, Jan (2010). "Two Major Archaeal Pseudomurein Endoisopeptidases: PeiW and PeiP". Archaea. 2010: 1–4. doi:10.1155/2010/480492.