From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In mathematics, in the area of combinatorics, the q-derivative, or Jackson derivative, is a q-analog of the ordinary derivative, introduced by Frank Hilton Jackson. It is the inverse of Jackson's q-integration. For other forms of q-derivative, see (Chung et al. (1994)).


The q-derivative of a function f(x) is defined as

It is also often written as . The q-derivative is also known as the Jackson derivative.

Formally, in terms of Lagrange's shift operator in logarithmic variables, it amounts to the operator

which goes to the plain derivative as .

It is manifestly linear,

It has product rule analogous to the ordinary derivative product rule, with two equivalent forms

Similarly, it satisfies a quotient rule,

There is also a rule similar to the chain rule for ordinary derivatives. Let . Then

The eigenfunction of the q-derivative is the q-exponential eq(x).

Relationship to ordinary derivatives[edit]

Q-differentiation resembles ordinary differentiation, with curious differences. For example, the q-derivative of the monomial is:

where is the q-bracket of n. Note that so the ordinary derivative is regained in this limit.

The n-th q-derivative of a function may be given as:

provided that the ordinary n-th derivative of f exists at x = 0. Here, is the q-Pochhammer symbol, and is the q-factorial. If is analytic we can apply the Taylor formula to the definition of to get

A q-analog of the Taylor expansion of a function about zero follows:

See also[edit]


  • F. H. Jackson (1908), On q-functions and a certain difference operator, Trans. Roy. Soc. Edin., 46, 253-281.
  • Exton, H. (1983), q-Hypergeometric Functions and Applications, New York: Halstead Press, Chichester: Ellis Horwood, 1983, ISBN 0853124914, ISBN 0470274530, ISBN 978-0470274538
  • Victor Kac, Pokman Cheung, Quantum Calculus, Universitext, Springer-Verlag, 2002. ISBN 0-387-95341-8
  • Chung, K. S., Chung, W. S., Nam, S. T., & Kang, H. J. (1994). New q-derivative and q-logarithm. International Journal of Theoretical Physics, 33, 2019-2029.

Further reading[edit]