From Wikipedia, the free encyclopedia
In mathematics , the quadruple product is a product of four vectors in three-dimensional Euclidean space . The name "quadruple product" is used for two different products,[1] the scalar-valued scalar quadruple product and the vector-valued vector quadruple product or vector product of four vectors .
Scalar quadruple product [ edit ]
The scalar quadruple product is defined as the dot product of two cross products :
(
a
×
b
)
⋅
(
c
×
d
)
,
{\displaystyle (\mathbf {a\times b} )\cdot (\mathbf {c} \times \mathbf {d} )\ ,}
where a, b, c, d are vectors in three-dimensional Euclidean space.[2] It can be evaluated using the identity:[2]
(
a
×
b
)
⋅
(
c
×
d
)
=
(
a
⋅
c
)
(
b
⋅
d
)
−
(
a
⋅
d
)
(
b
⋅
c
)
.
{\displaystyle (\mathbf {a\times b} )\cdot (\mathbf {c} \times \mathbf {d} )=(\mathbf {a\cdot c} )(\mathbf {b\cdot d} )-(\mathbf {a\cdot d} )(\mathbf {b\cdot c} )\ .}
or using the determinant :
(
a
×
b
)
⋅
(
c
×
d
)
=
|
a
⋅
c
a
⋅
d
b
⋅
c
b
⋅
d
|
.
{\displaystyle (\mathbf {a\times b} )\cdot (\mathbf {c} \times \mathbf {d} )={\begin{vmatrix}\mathbf {a\cdot c} &\mathbf {a\cdot d} \\\mathbf {b\cdot c} &\mathbf {b\cdot d} \end{vmatrix}}\ .}
We first prove that
c
×
(
b
×
a
)
⋅
d
=
(
a
×
b
)
⋅
(
c
×
d
)
.
{\displaystyle {\begin{aligned}\mathbf {c} \times (\mathbf {b} \times \mathbf {a} )\cdot \mathbf {d} =(\mathbf {a} \times \mathbf {b} )\cdot (\mathbf {c} \times \mathbf {d} ).\end{aligned}}}
This can be shown by straightforward matrix algebra using the correspondence between elements of
R
3
{\displaystyle \mathbb {R} ^{3}}
and
s
o
(
3
)
{\displaystyle {\mathfrak {so}}(3)}
, given by
R
3
∋
a
=
[
a
1
a
2
a
3
]
T
↦
a
^
∈
s
o
(
3
)
{\displaystyle \mathbb {R} ^{3}\ni \mathbf {a} ={\begin{bmatrix}a_{1}&a_{2}&a_{3}\end{bmatrix}}^{\mathrm {T} }\mapsto \mathbf {\hat {a}} \in {\mathfrak {so}}(3)}
, where
a
^
=
[
0
−
a
3
a
2
a
3
0
−
a
1
−
a
2
a
1
0
]
.
{\displaystyle {\begin{aligned}\mathbf {\hat {a}} ={\begin{bmatrix}0&-a_{3}&a_{2}\\a_{3}&0&-a_{1}\\-a_{2}&a_{1}&0\end{bmatrix}}.\end{aligned}}}
It then follows from the properties of skew-symmetric matrices that
c
×
(
b
×
a
)
⋅
d
=
(
c
^
b
^
a
)
T
d
=
a
T
b
^
c
^
d
=
(
−
b
^
a
)
T
c
^
d
=
(
a
^
b
)
T
c
^
d
=
(
a
×
b
)
⋅
(
c
×
d
)
.
{\displaystyle {\begin{aligned}\mathbf {c} \times (\mathbf {b} \times \mathbf {a} )\cdot \mathbf {d} =(\mathbf {\hat {c}} \mathbf {\hat {b}} \mathbf {a} )^{\mathrm {T} }\mathbf {d} =\mathbf {a} ^{\mathrm {T} }\mathbf {\hat {b}} \mathbf {\hat {c}} \mathbf {d} =(-\mathbf {\hat {b}} \mathbf {a} )^{\mathrm {T} }\mathbf {\hat {c}} \mathbf {d} =(\mathbf {\hat {a}} \mathbf {b} )^{\mathrm {T} }\mathbf {\hat {c}} \mathbf {d} =(\mathbf {a} \times \mathbf {b} )\cdot (\mathbf {c} \times \mathbf {d} ).\end{aligned}}}
We also know from vector triple products that
c
×
(
b
×
a
)
=
(
c
⋅
a
)
b
−
(
c
⋅
b
)
a
.
{\displaystyle {\begin{aligned}\mathbf {c} \times (\mathbf {b} \times \mathbf {a} )=(\mathbf {c} \cdot \mathbf {a} )\mathbf {b} -(\mathbf {c} \cdot \mathbf {b} )\mathbf {a} .\end{aligned}}}
Using this identity along with the one we have just derived, we obtain the desired identity:[citation needed ]
(
a
×
b
)
⋅
(
c
×
d
)
=
c
×
(
b
×
a
)
⋅
d
=
[
(
c
⋅
a
)
b
−
(
c
⋅
b
)
a
]
⋅
d
=
(
a
⋅
c
)
(
b
⋅
d
)
−
(
a
⋅
d
)
(
b
⋅
c
)
.
{\displaystyle {\begin{aligned}(\mathbf {a} \times \mathbf {b} )\cdot (\mathbf {c} \times \mathbf {d} )=\mathbf {c} \times (\mathbf {b} \times \mathbf {a} )\cdot \mathbf {d} =\left[(\mathbf {c} \cdot \mathbf {a} )\mathbf {b} -(\mathbf {c} \cdot \mathbf {b} )\mathbf {a} \right]\cdot \mathbf {d} =(\mathbf {a} \cdot \mathbf {c} )(\mathbf {b} \cdot \mathbf {d} )-(\mathbf {a} \cdot \mathbf {d} )(\mathbf {b} \cdot \mathbf {c} ).\end{aligned}}}
Vector quadruple product [ edit ]
The vector quadruple product is defined as the cross product of two cross products:
(
a
×
b
)
×
(
c
×
d
)
,
{\displaystyle (\mathbf {a\times b} )\mathbf {\times } (\mathbf {c} \times \mathbf {d} )\ ,}
where a, b, c, d are vectors in three-dimensional Euclidean space.[3] It can be evaluated using the identity:[4]
(
a
×
b
)
×
(
c
×
d
)
=
[
a
,
b
,
d
]
c
−
[
a
,
b
,
c
]
d
,
{\displaystyle (\mathbf {a\times b} )\mathbf {\times } (\mathbf {c} \times \mathbf {d} )=[\mathbf {a,\ b,\ d} ]\mathbf {c} -[\mathbf {a,\ b,\ c} ]\mathbf {d} \ ,}
using the notation for the triple product :
[
a
,
b
,
c
]
=
a
⋅
(
b
×
c
)
.
{\displaystyle [\mathbf {a,\ b,\ c} ]=\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} )\ .}
Equivalent forms can be obtained using the identity:[5]
[
b
,
c
,
d
]
a
−
[
c
,
d
,
a
]
b
+
[
d
,
a
,
b
]
c
−
[
a
,
b
,
c
]
d
=
0
.
{\displaystyle [\mathbf {b,\ c,\ d} ]\mathbf {a} -[\mathbf {c,\ d,\ a} ]\mathbf {b} +[\mathbf {d,\ a,\ b} ]\mathbf {c} -[\mathbf {a,\ b,\ c} ]\mathbf {d} =0\ .}
This identity can also be written using tensor notation and the Einstein summation convention as follows:
(
a
×
b
)
×
(
c
×
d
)
=
ε
i
j
k
a
i
c
j
d
k
b
l
−
ε
i
j
k
b
i
c
j
d
k
a
l
=
ε
i
j
k
a
i
b
j
d
k
c
l
−
ε
i
j
k
a
i
b
j
c
k
d
l
{\displaystyle (\mathbf {a\times b} )\mathbf {\times } (\mathbf {c} \times \mathbf {d} )=\varepsilon _{ijk}a^{i}c^{j}d^{k}b^{l}-\varepsilon _{ijk}b^{i}c^{j}d^{k}a^{l}=\varepsilon _{ijk}a^{i}b^{j}d^{k}c^{l}-\varepsilon _{ijk}a^{i}b^{j}c^{k}d^{l}}
Application [ edit ]
The quadruple products are useful for deriving various formulas in spherical and plane geometry.[3] For example, if four points are chosen on the unit sphere, A, B, C, D , and unit vectors drawn from the center of the sphere to the four points, a, b, c, d respectively, the identity:
(
a
×
b
)
⋅
(
c
×
d
)
=
(
a
⋅
c
)
(
b
⋅
d
)
−
(
a
⋅
d
)
(
b
⋅
c
)
,
{\displaystyle (\mathbf {a\times b} )\mathbf {\cdot } (\mathbf {c\times d} )=(\mathbf {a\cdot c} )(\mathbf {b\cdot d} )-(\mathbf {a\cdot d} )(\mathbf {b\cdot c} )\ ,}
in conjunction with the relation for the magnitude of the cross product:
‖
a
×
b
‖
=
a
b
sin
θ
a
b
,
{\displaystyle \|\mathbf {a\times b} \|=ab\sin \theta _{ab}\ ,}
and the dot product:
a
⋅
b
=
a
b
cos
θ
a
b
,
{\displaystyle \mathbf {a\cdot b} =ab\cos \theta _{ab}\ ,}
where a = b = 1 for the unit sphere, results in the identity among the angles attributed to Gauss:
sin
θ
a
b
sin
θ
c
d
cos
x
=
cos
θ
a
c
cos
θ
b
d
−
cos
θ
a
d
cos
θ
b
c
,
{\displaystyle \sin \theta _{ab}\sin \theta _{cd}\cos x=\cos \theta _{ac}\cos \theta _{bd}-\cos \theta _{ad}\cos \theta _{bc}\ ,}
where x is the angle between a × b and c × d , or equivalently, between the planes defined by these vectors.
Josiah Willard Gibbs 's pioneering work on vector calculus provides several other examples.[3]
See also [ edit ]
References [ edit ]