Quantum triviality

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In a quantum field theory, charge screening can restrict the value of the observable "renormalized" charge of a classical theory. If the only allowed value of the renormalized charge is zero, the theory is said to be "trivial" or noninteracting. Thus, surprisingly, a classical theory that appears to describe interacting particles can, when realized as a quantum field theory, become a "trivial" theory of noninteracting free particles. This phenomenon is referred to as quantum triviality. Strong evidence supports the idea that a field theory involving only a scalar Higgs boson is trivial in four spacetime dimensions,[1][2] but the situation for realistic models including other particles in addition to the Higgs boson is not known in general. Nevertheless, because the Higgs boson plays a central role in the Standard Model of particle physics, the question of triviality in Higgs models is of great importance.

This Higgs triviality is similar to the Landau pole problem in quantum electrodynamics, where this quantum theory may be inconsistent at very high momentum scales unless the renormalized charge is set to zero, i.e., unless the field theory has no interactions. The Landau pole question is generally considered to be of minor academic interest for quantum electrodynamics because of the inaccessibly large momentum scale at which the inconsistency appears. This is not however the case in theories that involve the elementary scalar Higgs boson, as the momentum scale at which a "trivial" theory exhibits inconsistencies may be accessible to present experimental efforts such as at the LHC. In these Higgs theories, the interactions of the Higgs particle with itself are posited to generate the masses of the W and Z bosons, as well as lepton masses like those of the electron and muon. If realistic models of particle physics such as the Standard Model suffer from triviality issues, the idea of an elementary scalar Higgs particle may have to be modified or abandoned.

The situation becomes more complex in theories that involve other particles however. In fact, the addition of other particles can turn a trivial theory into a nontrivial one, at the cost of introducing constraints. Depending on the details of the theory, the Higgs mass can be bounded or even predictable.[2] These quantum triviality constraints are in sharp contrast to the picture one derives at the classical level, where the Higgs mass is a free parameter.

Triviality and the renormalization group[edit]

Modern considerations of triviality are usually formulated in terms of the real-space renormalization group, largely developed by Kenneth Wilson and others. Investigations of triviality are usually performed in the context of lattice gauge theory.A deeper understanding of the physical meaning and generalization of the renormalization process, which goes beyond the dilatation group of conventional renormalizable theories, came from condensed matter physics. Leo P. Kadanoff's paper in 1966 proposed the "block-spin" renormalization group.[3] The blocking idea is a way to define the components of the theory at large distances as aggregates of components at shorter distances.

This approach covered the conceptual point and was given full computational substance[4] in the extensive important contributions of Kenneth Wilson. The power of Wilson's ideas was demonstrated by a constructive iterative renormalization solution of a long-standing problem, the Kondo problem, in 1974, as well as the preceding seminal developments of his new method in the theory of second-order phase transitions and critical phenomena in 1971. He was awarded the Nobel prize for these decisive contributions in 1982.

In more technical terms, let us assume that we have a theory described by a certain function Z of the state variables \{s_i\} and a certain set of coupling constants \{J_k\}. This function may be a partition function, an action, a Hamiltonian, etc. It must contain the whole description of the physics of the system.

Now we consider a certain blocking transformation of the state variables \{s_i\}\to \{\tilde s_i\}, the number of \tilde s_i must be lower than the number of s_i. Now let us try to rewrite the Z function only in terms of the \tilde s_i. If this is achievable by a certain change in the parameters, \{J_k\}\to
\{\tilde J_k\}, then the theory is said to be renormalizable. The most important information in the RG flow are its fixed points. The possible macroscopic states of the system, at a large scale, are given by this set of fixed points. If these fixed points correspond to a free field theory, the theory is said to be trivial.

Mathematical background[edit]

The first evidence of possible triviality of quantum field theories was obtained by Landau, Abrikosov, and Khalatnikov[5][6][7] who obtained the following relation of the observable charge gobs with the “bare” charge g₀,

g_{obs}=\frac{g_0}{1+\beta_2 g_0 \ln \Lambda/m}~,






where m is the mass of the particle, and Λ is the momentum cut-off. If g₀ is finite, then gobs tends to zero in the limit of infinite cut-off Λ.

In fact, the proper interpretation of Eq.1 consists in its inversion, so that g₀ (related to the length scale 1/Λ) is chosen to give a correct value of gobs,

g_0=\frac{g_{obs}}{1-\beta_2 g_{obs} \ln \Lambda/m}~.






The growth of g₀ with Λ invalidates Eqs. (1) and (2) in the region g₀ ≈ 1 (since they were obtained for g₀ ≪ 1) and the existence of the “Landau pole" in Eq.2 has no physical meaning.

The actual behavior of the charge g(μ) as a function of the momentum scale μ is determined by the full Gell-Mann–Low equation

\frac{dg}{d \ln \mu} =\beta(g)=\beta_2 g^2+\beta_3 g^3+\ldots ~,






which gives Eqs.(1),(2) if it is integrated under conditions g(μ) =gobs for μ = m and g(μ) = g₀ for μ = Λ, when only the term with \beta_2 is retained in the right hand side.

The general behavior of g(\mu) relies on the appearance of the function β(g). According to the classification by Bogoliubov and Shirkov,[8] there are three qualitatively different situations:

  1. if \beta(g) has a zero at the finite value g*, then growth of g is saturated, i.e. g(\mu)\to g* for \mu\to\infty;
  2. if \beta(g) is non-alternating and behaves as \beta(g) \propto g^\alpha with \alpha\le 1 for large g, then the growth of g(\mu) continues to infinity;
  3. if \beta(g) \propto g^\alpha with \alpha>1 for large g, then g(\mu) is divergent at finite value \mu_0 and the real Landau pole arises: the theory is internally inconsistent due to indeterminacy of g(\mu) for \mu>\mu_0.

The latter case corresponds to the quantum triviality in the full theory (beyond its perturbation context), as can be seen by reductio ad absurdum. Indeed, if gobs is finite, the theory is internally inconsistent. The only way to avoid it, is to tend \mu_0 to infinity, which is possible only for gobs → 0.

As a result, the question of whether the Standard Model of particle physics is nontrivial (and whether elementary scalar Higgs particles can exist) remains a serious unresolved question. Partial evidence in favor of its positive solution has appeared;[9][10][11] implications for the Standard Model and the resulting Higgs Boson mass bounds have also been discussed.[12][13][14]

See also[edit]


  1. ^ R. Fernandez, J. Froehlich, A. D. Sokal (1992). Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer. ISBN 0-387-54358-9. 
  2. ^ a b D. J. E. Callaway (1988). "Triviality Pursuit: Can Elementary Scalar Particles Exist?". Physics Reports 167 (5): 241–320. Bibcode:1988PhR...167..241C. doi:10.1016/0370-1573(88)90008-7. 
  3. ^ L.P. Kadanoff (1966): "Scaling laws for Ising models near T_c", Physics (Long Island City, N.Y.) 2, 263.
  4. ^ K.G. Wilson(1975): The renormalization group: critical phenomena and the Kondo problem, Rev. Mod. Phys. 47, 4, 773.
  5. ^ L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov (1954). Doklady Akademii Nauk SSSR 95: 497.  Missing or empty |title= (help)
  6. ^ L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov (1954). Doklady Akademii Nauk SSSR 95: 773.  Missing or empty |title= (help)
  7. ^ L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov (1954). Doklady Akademii Nauk SSSR 95: 1177.  Missing or empty |title= (help)
  8. ^ N. N. Bogoliubov, D. V. Shirkov (1980). Introduction to the Theory of Quantized Fields (3rd ed.). John Wiley & Sons. ISBN 978-0-471-04223-5. 
  9. ^ Callaway, D.; Petronzio, R. (1987). "Is the standard model Higgs mass predictable?". Nuclear Physics B 292: 497. Bibcode:1987NuPhB.292..497C. doi:10.1016/0550-3213(87)90657-2. 
  10. ^ I. M. Suslov (2010). "Asymptotic Behavior of the β Function in the φ4 Theory: A Scheme Without Complex Parameters". Journal of Experimental and Theoretical Physics 111 (3): 450. arXiv:1010.4317. Bibcode:2010JETP..111..450S. doi:10.1134/S1063776110090153. 
  11. ^ Frasca, Marco (2011). Mapping theorem and Green functions in Yang-Mills theory (PDF). The many faces of QCD. Trieste: Proceedings of Science. p. 039. arXiv:1011.3643. Retrieved 2011-08-27. 
  12. ^ Callaway, D. J. E. (1984). "Non-triviality of gauge theories with elementary scalars and upper bounds on Higgs masses". Nuclear Physics B 233 (2): 189. doi:10.1016/0550-3213(84)90410-3. 
  13. ^ Lindner, M. (1986). "Implications of triviality for the standard model". Zeitschrift für Physik C 31: 295. Bibcode:1986ZPhyC..31..295L. doi:10.1007/BF01479540. 
  14. ^ Urs Heller, Markus Klomfass, Herbert Neuberger, and Pavlos Vranas, (1993). "Numerical analysis of the Higgs mass triviality bound", Nucl. Phys., B405: 555-573.