Quisqualic acid

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Quisqualic acid
Quisqualic acid.svg
Quisqualic acid spacefill.png
Quisqualic acid.png
Names
IUPAC names
(2S)-2-amino-3-(3,5-dioxo-1,2,4-
oxadiazolidin-2-yl)propanoic acid
Identifiers
52809-07-1 N
ChEMBL ChEMBL279956 YesY
ChemSpider 37038 YesY
DrugBank DB02999 YesY
1372
1370
Jmol 3D model Interactive image
KEGG C08296 YesY
MeSH Quisqualic+Acid
PubChem 40539
Properties
C5H7N3O5
Molar mass 189.126 g/mol
Melting point 187 to 188 °C (369 to 370 °F; 460 to 461 K) decomposes
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Quisqualic acid is an agonist of the AMPA, kainate, and group I metabotropic glutamate receptors, and one of the most potent AMPA receptor agonists known.[1][2][3][4] It causes excitotoxicity and is used in neuroscience to selectively destroy neurons in the brain or spinal cord.[5][6][7] Quisqualic acid occurs naturally in the seeds of Quisqualis species.[α] 20D = +17 (6M HCl)

Research conducted by the USDA Agricultural Research Service, has demonstrated quisqualic acid is also present within the flower petals of zonal geranium (Pelargonium x hortorum) and is responsible for causing rigid paralysis of the Japanese beetle.[8][9] Quisqualic acid is thought to mimic L-glutamic acid, which is a neurotransmitter in the insect neuromuscular junction and mammalian central nervous system.[10]

See also[edit]

References[edit]

  1. ^ Jin R, Horning M, Mayer ML, Gouaux E. Mechanism of activation and selectivity in a ligand-gated ion channel: structural and functional studies of GluR2 and quisqualate. Biochemistry. 2002 Dec 31;41(52):15635-43. PMID 12501192
  2. ^ Kuang D, Hampson DR. Ion dependence of ligand binding to metabotropic glutamate receptors. Biochemical and Biophysical Research Communications. 2006 Jun 23;345(1):1-6. PMID 16674916
  3. ^ Zhang W, Robert A, Vogensen SB, Howe JR. The relationship between agonist potency and AMPA receptor kinetics. Biophysical Journal. 2006 Aug 15;91(4):1336-46. PMID 16731549
  4. ^ Bentham Science Publishers (August 1996). Current Pharmaceutical Design. Bentham Science Publishers. pp. 399–. 
  5. ^ Muir JL, Page KJ, Sirinathsinghji DJ, Robbins TW, Everitt BJ. Excitotoxic lesions of basal forebrain cholinergic neurons: effects on learning, memory and attention. Behavioural Brain Research. 1993 Nov 30;57(2):123-31. PMID 7509608
  6. ^ Giovannelli L, Casamenti F, Pepeu G. C-fos expression in the rat nucleus basalis upon excitotoxic lesion with quisqualic acid: a study in adult and aged animals. Journal of Neural Transmission. 1998;105(8-9):935-48. PMID 9869327
  7. ^ Lee JW, Furmanski O, Castellanos DA, Daniels LA, Hama AT, Sagen J. Prolonged nociceptive responses to hind paw formalin injection in rats with a spinal cord injury. Neuroscience Letters. 2008 Jul 11;439(2):212-5. PMID 18524486
  8. ^ Geraniums and Begonias: New Research on Old Garden Favorites (the March 2010 issue of Agricultural Research magazine.)
  9. ^ Ranger, C.M., Winter, R. E., Singh, A. P., Reding, M. E., Frantz, J. M., Locke, J. C., and Krause, C. R. 2011. Rare excitatory amino acid from flowers of zonal geranium responsible for paralyzing the Japanese beetle. Proceedings of the National Academy of Sciences. http://www.pnas.org/content/early/2010/12/29/1013497108.full.pdf+html
  10. ^ Usherwood, P. N. R. 1994. Insect glutamate receptors. Advances in Insect Biochemistry and Physiology. 24: 309-341.