R. M. Wilson

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
R. M. Wilson
Richard Michael Wilson

(1945-11-23) 23 November 1945 (age 73)
ResidenceUnited States
Alma materIndiana University (BS)
Ohio State University (MS, PhD)
Known forKirkman's schoolgirl problem
Scientific career
Doctoral advisorDijen K. Ray-Chaudhuri[1]
Doctoral studentsJeff Dinitz[1]
Pierre Baldi[1]

Richard Michael Wilson (23 November 1945) is a mathematician and a professor at the California Institute of Technology.[2] Wilson and his PhD supervisor Dijen K. Ray-Chaudhuri, solved Kirkman's schoolgirl problem in 1968.[citation needed] Wilson is known for his work in combinatorial mathematics.


Wilson was educated at Indiana University where he was awarded a Bachelor of Science degree in 1966.[2] followed by a Master of Science degree from Ohio State University in 1968. His PhD, also from Ohio State University was awarded in 1969 for research supervised by Dijen K. Ray-Chaudhuri.[1]

Career and research[edit]

His breakthrough in pairwise balanced designs, and orthogonal Latin squares built upon the groundwork set before him, by R. C. Bose, E. T. Parker, S. S. Shrikhande, and Haim Hanani is widely referenced in Combinatorial Design Theory and Coding Theory.[3]


  • Jacobus H. van Lint; Richard M. Wilson (2001). A course in combinatorics. Cambridge University Press. ISBN 9780521006019. LCCN 2002276170.
  • Peter Frankl; Vojtech Rödl; Richard M. Wilson (1988). "The number of submatrices of a given type in a Hadamard matrix and related results". Journal of Combinatorial Theory. 44 (3): 317–328. doi:10.1016/0095-8956(88)90040-8.
  • Jacobus H. Van Lint; Richard M. Wilson (1986). "On the minimum distance of cyclic codes". IEEE Transactions on Information Theory. 32 (1): 23–40. doi:10.1109/TIT.1986.1057134.
  • Peter Frankl; Richard M. Wilson (1986). "The Erdös-Ko-Rado theorem for vector spaces". Journal of Combinatorial Theory. 43 (2): 228–236. doi:10.1016/0097-3165(86)90063-4.
  • Jacobus H. Van Lint; Richard M. Wilson (1986). "Binary cyclic codes generated by mira7". IEEE Transactions on Information Theory. 32 (2): 283. doi:10.1109/tit.1986.1057166.
  • Paul Erdös; Joel C. Fowler; Vera T. Sós; Richard M. Wilson (1985). "On 2-Designs". Journal of Combinatorial Theory. 38 (2): 131–142. doi:10.1016/0097-3165(85)90064-0.
  • Richard M. Wilson (1984). "The exact bound in the Erdös - Ko - Rado theorem". Combinatorica. 4 (2): 247–257. doi:10.1007/BF02579226.
  • R. D. Baker; Jacobus H. Van Lint; Richard M. Wilson (1983). "On the Preparata and Goethals codes". IEEE Transactions on Information Theory. 29 (3): 342–344. doi:10.1109/TIT.1983.1056675.
  • Richard M. Wilson (1983). "Inequalities for t Designs". Journal of Combinatorial Theory. 34 (3): 313–324. doi:10.1016/0097-3165(83)90065-1.
  • Peter Frankl; Richard M. Wilson (1981). "Intersection theorems with geometric consequences". Combinatorica. 1 (4): 357–368. doi:10.1007/BF02579457.
  • L. W. Beineke; R. S. Wilson (1978). "Selected topics in graph theory".
  • R. Baker; R. M. Wilson (1977). "Nearly Kirkman triple systems".
  • R. M. Wilson; D. L. Teuber; D. T. Thomas; J. R. Watkins; C. M. Cooper (1977). "The MSFC Image Data Processing System". IEEE Computer. 10 (8): 37–44. doi:10.1109/C-M.1977.217821.
  • N. L. Biggs; E. K. Lloyd; R. J. Wilson (1976). "Graph Theory: 1736-1936".
  • J. J. Gibson; Richard M. Wilson (1976). "The Mini-State-A Small Television Antenna". IEEE Transactions on Consumer Electronics. 22 (2): 159–175. doi:10.1109/TCE.1976.266778.
  • Richard M. Wilson (1975). "An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures". Journal of Combinatorial Theory. 18 (1): 71–79. doi:10.1016/0097-3165(75)90067-9.
  • R. M. Wilson (1975). "Decomposition of complete graphs into subgraphs isomorphic to a given graph".
  • R. M. Wilson (1974). Constructions and uses of pairwise balanced designs. Combinatorica. 16. pp. 19–42. doi:10.1007/978-94-010-1826-5_2. ISBN 978-94-010-1828-9.
  • R WILSON (1974). "Graph puzzles, homotopy, and the alternating group*1". Journal of Combinatorial Theory. 16 (1): 86–96. doi:10.1016/0095-8956(74)90098-7.
  • R. M. Wilson (1974). "Concerning the number of mutually orthogonal latin squares". Discrete Mathematics. 9 (2): 181–198. doi:10.1016/0012-365X(74)90148-4.
  • R. M. Wilson; J Fawcett (1974). "Dynamics of the slider-crank mechanism with clearance in the sliding bearing". Mechanism and Machine Theory. 9 (1): 61–80. doi:10.1016/0094-114X(74)90008-1.
  • J. Doyen; Richard M. Wilson (1973). "Embeddings of Steiner triple systems". Discrete Mathematics. 5 (3): 229–239. doi:10.1016/0012-365X(73)90139-8.
  • R. M. Wilson (1973). "The necessary conditions for t-designs are su cient for something".
  • L. W. Beineke; R. J. Wilson (1973). "On the edge-chromatic number of a graph". Discrete Mathematics. 5 (1): 15–20. doi:10.1016/0012-365X(73)90023-X.
  • R WILSON (1973). "Electron emission from Al2O3 in cesium vapor". Surface Science. 38 (1): 261–264. doi:10.1016/0039-6028(73)90293-8.
  • Richard M. Wilson (1972). "An Existence Theory for Pairwise Balanced Designs I. Composition Theorems and Morphisms". Journal of Combinatorial Theory. 13 (2): 220–245. doi:10.1016/0097-3165(72)90028-3.
  • R. M. Wilson (1972). "Cyclotomy and difierence families in elementary abelian groups".
  • R. M. Wilson (1972). "An existence theory for pairwise balanced designs I". Journal of Combinatorial Theory. 13 (2): 220–245. doi:10.1016/0097-3165(72)90028-3.
  • Richard M. Wilson (1972). "An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures". Journal of Combinatorial Theory. 13 (2): 246–273. doi:10.1016/0097-3165(72)90029-5.


  1. ^ a b c d Richard Michael Wilson at the Mathematics Genealogy Project
  2. ^ a b galvez, cherie. "Richard M. Wilson". www.math.caltech.edu.
  3. ^ Arasu, KT; Liu, X.; McGuire, G. (2012). "Preface: Richard M. Wilson, Special issue honoring his 65th birthday". Designs, Codes and Cryptography: 1–2.