RD-107

From Wikipedia, the free encyclopedia
Jump to: navigation, search
RD-107
RD-107 Vostok.jpg
Rocket engine RD-107 "Vostok" in the Museum of Space and Missile Technology (Saint Petersburg).
Country of origin USSR
Designer OKB-456
Manufacturer JSC Kuznetsov[1]
Application booster engine
Associated L/V R-7 Family of launchers
Predecessor RD-105
Status In Production
Liquid-fuel engine
Propellant LOX / Kerosene
Cycle Gas generator
Performance
Thrust (vac.) RD-107: 1,000 kilonewtons (220,000 lbf)
RD-107A: 1,020 kilonewtons (230,000 lbf)
Thrust (SL) RD-107: 810 kilonewtons (180,000 lbf)
RD-107A: 839 kilonewtons (189,000 lbf)
Isp (vac.) RD-107: 313 sec
RD-107A: 320.2 sec
Isp (SL) RD-107: 256 sec
RD-107A: 263.3 sec
Dimensions
Dry weight RD-107: 1,190 kilograms (2,620 lb)
RD-107A1,190 kilograms (2,620 lb)
Used in
First stage boosters for R-7 family
References
References [2][3][4][5][5][6]

The RD-107 and its sibling, the RD-108, are a type of rocket engine initially used to launch R-7 Semyorka missiles. RD-107 engines were later used on space launch vehicles based on the R-7. As of 2015, very similar RD-107A and RD-108A engines are used to launch the Soyuz FG, Soyuz-2.1a and Soyuz-2.1b, which are in active service.[7]

Design[edit]

The RD-107 was designed under the direction of Valentin Glushko at the Gas Dynamics Laboratory-Experimental Design Bureau (OKB-456) between 1954 and 1957. It uses liquid oxygen and kerosene as propellants, operating in a gas generator cycle. As was typical by all the descendants of the V-2 technology, the turbine is driven by steam generated by catalytic decomposition of H2O2. The steam generator uses solid F-30-P-G catalyst. These are based on variable sized pellet covered in an aqueous solution of potassium permanganate and sodium as active catalyst. Each engine uses four fixed main combustion chambers. The RD-107 has an additional two vernier combustion chambers that can gimbal in a single plane, to supply thrust vectoring. The RD-108 has four of such vernier combustion chambers to supply full vector control to the Blok-A stage. The single-axle turbopump unit includes the steam driven turbine, an oxidizer pump, a fuel pump, and a nitrogen gas generator for tank pressurization.[3]

One important innovation of this engine was the capability to use variable mixture ratio between fuel and oxidizer. The natural variations in manufacturing between each engine meant that without an active propellant consumption control, each boosters would deplete oxygen and fuel at different rates. This might result in as much as tens of tonnes of propellant near the end of their burn. It would generate enormous strains on the structure and control authority doe to the mass imbalance. Thus, the engines and the control system was developed to ensure the simultaneous consumption of propellant mass among the four R-7 boosters.[8][3]

Production[edit]

The RD-107 and RD-108 engines are produced at the JSC Kuznetsov plant in Samara, Russia, under the supervision of the Privolzhskiy branch of NPO Energomash, also known as the Volga branch.[1][5][3] The Privolzhsky branch was organized as a branch of OKB-456 in 1958, specifically for the manufacture of RD-107 and RD-108 engines. The branch was led by Y.D. Solovjev until 1960, then by R.I. Zelenev until 1975, then by A.F. Udalov until 1978, and is currently led by A.A. Ganin.[9]

Versions[edit]

Modifications to the RD-107 design have led to production of several distinct versions of the engine:

  • RD-107 (AKA 8D74): Original version.[4] Used on the R-7, Sputnik, Vostok and Voskhod.[3]
  • RD-107K (AKA 8D74K): Improved version of the 8D74. Used on the Molniya (8К78).[3]
  • RD-107ММ (AKA 8D728 or 8D74M): Increased thrust over the 8D74K by 5%.[4] Used on the Molniya-M (8К78М) and Soyuz (11A511).[3]
  • RD-117 (AKA 11D511): Improved structural changes.[4] Used on the Soyuz-U (11А511U) and Soyuz-U2 (11A511U2).[3]
  • RD-107А (AKA 14D22): Improved version of the 11D511 with new injector design that eliminated the high frequency combustion instabilities.[4] Used on the Soyuz-FG (11А511U-FG), Soyuz-STA (372RN21A) and Soyuz-STB (372RN21B).[3]
  • RD-107А (AKA 14D22KhZ): Chemical ignited version of the 14D22. Used on the Soyuz-2.1a (14A14-1A) and Soyuz-2.1b (14A14-1B).[10][3]
RD-107 Family of Engines
Engine RD-107 RD-107K RD-107ММ RD-117 RD-107A RD-107A
AKA 8D74 8D74K 8D728 or 8D74M 11D511 14D22 14D22KhZ
Development 1954-1959 1965-1976 1969-1975 1993-2001 2001-2004
Engine Cycle Liquid propellant rocket engine burning RG-1/LOX in the gas generator cycle with the turbine driven by steam generated by catalytic decomposition of H2O2
Combustion Chamber Pressure 5.88 MPa (853 psi) 5.88 MPa (853 psi) 5.85 MPa (848 psi) 5.32 MPa (772 psi) 6.00 MPa (870 psi) 6.00 MPa (870 psi)
Thrust (Sea Level) 813.98 kN (182,990 lbf) 818.88 kN (184,090 lbf) 755.14 kN (169,760 lbf) 778.68 kN (175,050 lbf) 839.48 kN (188,720 lbf) 839.48 kN (188,720 lbf)
Thrust (Vacuum) 1,000.31 kN (224,880 lbf) 995.41 kN (223,780 lbf) 921.86 kN (207,240 lbf) Unknown 1,019.93 kN (229,290 lbf) 1,019.93 kN (229,290 lbf)
Specific Impulse (Sea Level) 256 s (2.51 km/s) 256.2 s (2.512 km/s) 257 s (2.52 km/s) 253 s (2.48 km/s) 263.3 s (2.582 km/s) 263.3 s (2.582 km/s)
Specific Impulse (Vacuum) 313 s (3.07 km/s) 313.3 s (3.072 km/s) 314 s (3.08 km/s) 316 s (3.10 km/s) 320.2 s (3.140 km/s) 320.2 s (3.140 km/s)
Height 2,865 mm (112.8 in) 2,865 mm (112.8 in) 2,865 mm (112.8 in) 2,865 mm (112.8 in) 2,578 mm (101.5 in) 2,578 mm (101.5 in)
Diameter 1,850 mm (73 in) 1,850 mm (73 in) 1,850 mm (73 in) 1,850 mm (73 in) 1,850 mm (73 in) 1,850 mm (73 in)
Intended Use R-7, Sputnik, Vostok and Voskhod Molniya (8К78) Molniya-M (8К78М) and Soyuz (11A511) Soyuz-U (11А511U) and Soyuz-U2 (11A511U2) Soyuz-FG (11А511U-FG), Soyuz-STA (372RN21A) and Soyuz-STB (372RN21B) Soyuz-2.1a (14A14-1A) and Soyuz-2.1b (14A14-1B)
Status Retired Retired Retired In Production In Production In Production
References Unless otherwise noted: [4][3]

Similar modifications have led to several distinct versions of the RD-108:

  • RD-108 (AKA 8D75): Original version.[4] Used on the R-7, Sputnik, Vostok and Voskhod.[3]
  • RD-108K (AKA 8D75K): Improved version of the 8D74. Used on the Molniya (8К78).[3]
  • RD-108ММ (AKA 8D727 or 8D75M): Increased thrust over the 8D74K by 5%.[4] Used on the Molniya-M (8К78М) and Soyuz (11A511).[3]
  • RD-118 (AKA 11D512): Improved structural changes.[4] Used on the Soyuz-U (11А511U).[3]
  • RD-118PF (AKA 11D512PF): Version of the 11D5212 that run on Syntin rather than RG-1. It used selected injectors to minimize instabilities without changing constructions methods. But it required significant amount of engines production to get injectors that complied with the stringent specifications. Used on the Soyuz-U2 (11A511U2).[3][11]
  • RD-108А (AKA 14D21): Improved version of the 11D511 with new injector design that eliminated the high frequency combustion instabilities.[4] Used on the Soyuz-FG (11А511U-FG), Soyuz-STA (372RN21A) and Soyuz-STB (372RN21B).[3]
  • RD-108А (AKA 14D21KhZ): Chemical ignited version of the 14D22. Used on the Soyuz-2.1a (14A14-1A) and Soyuz-2.1b (14A14-1B).[10][3]
RD-107 Family of Engines
Engine RD-108 RD-108K RD-108ММ RD-118 RD-118PF RD-108A RD-108A
AKA 8D75 8D75K 8D727 or 8D75M 11D512 11D512PF[11] 14D21 14D21KhZ
Development 1954-1959 1965-1976 1969-1975 1979-1981 1993-2001 2001-2004
Engine Cycle Liquid propellant rocket engine burning RG-1/LOX in the gas generator cycle with the turbine driven by steam generated by catalytic decomposition of H2O2
Propellant RG-1/LOX Syntin/LOX[11] RG-1/LOX
Combustion Chamber Pressure 5.10 MPa (740 psi) 5.10 MPa (740 psi) 5.32 MPa (772 psi) 5.85 MPa (848 psi) 5.39 MPa (782 psi) 5.44 MPa (789 psi) 5.44 MPa (789 psi)
Thrust (Sea Level) 745.33 kN (167,560 lbf) 745.33 kN (167,560 lbf) 676.68 kN (152,120 lbf) 818.88 kN (184,090 lbf) Unknown 792.41 kN (178,140 lbf) 792.41 kN (178,140 lbf)
Thrust (Vacuum) 941.47 kN (211,650 lbf) 941.47 kN (211,650 lbf) 833.60 kN (187,400 lbf) 1,000.31 kN (224,880 lbf) Unknown 921.86 kN (207,240 lbf) 921.86 kN (207,240 lbf)
Specific Impulse (Sea Level) 248 s (2.43 km/s) 248.2 s (2.434 km/s) 253 s (2.48 km/s) 257 s (2.52 km/s) 263.5 s (2.584 km/s) 257.7 s (2.527 km/s) 257.7 s (2.527 km/s)
Specific Impulse (Vacuum) 315 s (3.09 km/s) 314.2 s (3.081 km/s) 316 s (3.10 km/s) 314 s (3.08 km/s) Unknown 320.6 s (3.144 km/s) 320.6 s (3.144 km/s)
Height 2,865 mm (112.8 in) 2,865 mm (112.8 in) 2,865 mm (112.8 in) 2,865 mm (112.8 in) 2,865 mm (112.8 in) 2,865 mm (112.8 in) 2,865 mm (112.8 in)
Diameter 1,950 mm (77 in) 1,950 mm (77 in) 1,950 mm (77 in) 1,950 mm (77 in) 1,950 mm (77 in) 1,950 mm (77 in) 1,950 mm (77 in)
Intended Use R-7, Sputnik, Vostok and Voskhod Molniya (8К78) Molniya-M (8К78М) and Soyuz (11A511) Soyuz-U (11А511U) Soyuz-U2 (11A511U2) Soyuz-FG (11А511U-FG), Soyuz-STA (372RN21A) and Soyuz-STB (372RN21B) Soyuz-2.1a (14A14-1A) and Soyuz-2.1b (14A14-1B)
Status Retired Retired Retired In Production Retired In Production In Production
References Unless otherwise noted: [4][3]


Work on the 14D21 and 14D22 engines started in 1986, with a preliminary design completed in 1993. These engines incorporate a new injector head design to increase specific impulse. The first launch of a Progress cargo spacecraft using a launch vehicle equipped with these engines took place in May 2001. The first human spaceflight launch utilizing these engines took place in October 2002.[5]

Hypergolic vs. pyrotechnic ignition[edit]

Currently produced engines are ignited with a pyrotechnic ignition system. Energomash reports a new, hypergolic ignition system (on engines designated 14D21kHz and 14D22kHz) are ready for certification and flight tests.[5]

References[edit]

  1. ^ a b "RD-107, RD-108". JSC Kuznetsov. Retrieved 2015-07-17. 
  2. ^ "RD-107-8D74". Encyclopedia Astronautica. Retrieved 2015-07-14. 
  3. ^ a b c d e f g h i j k l m n o p q r s "ЖРД РД-107 и РД-108 и их модификации" [RD-107 and RD-108 and their modifications] (in Russian). Retrieved 2015-07-14. 
  4. ^ a b c d e f g h i j k "NPO Energomash list of engines". NPO Energomash. Retrieved 2015-06-20. 
  5. ^ a b c d e "RD-107/108". NPO Energomash. Retrieved 2015-07-14. 
  6. ^ John R. London III (October 1994). LEO on the Cheap (PDF). Air University Press. pp. 68–69. ISBN 0-89499-134-5. Archived from the original (PDF) on 2007-10-10. 
  7. ^ "Engines". NPO Energomash. Retrieved 2015-07-14. 
  8. ^ Chertok, Boris (June 2006). "Chapter 16 — The Seven Problems of the R-7 Missile". Rockets and People Vol. 2 — Creating a Rocket Industry (PDF). Volume 2 (NASA SP-2006-4110). NASA. p. 292. Retrieved 2015-07-15. 
  9. ^ "History". NPO Energomash. Retrieved 2015-07-14. 
  10. ^ a b Zak, Anatoly. "Soyuz-2 launch vehicle (14A14)". RussianSpaceWeb. Retrieved 2015-07-14. 
  11. ^ a b c Pillet, Nicolas. "Le lanceur Soyouz-U2 (11A511U-2)" [The Soyuz-U2 Launcher (11A511U-2)] (in French). Kosmonavtika.com. Retrieved 2015-07-14.