RHOBTB3

From Wikipedia, the free encyclopedia
Jump to: navigation, search
RHOBTB3
Identifiers
Aliases RHOBTB3
External IDs MGI: 1920546 HomoloGene: 8932 GeneCards: RHOBTB3
RNA expression pattern
PBB GE RHOBTB3 216048 s at fs.png

PBB GE RHOBTB3 202976 s at fs.png

PBB GE RHOBTB3 202975 s at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014899

NM_028493

RefSeq (protein)

NP_055714

NP_082769.1
NP_082769

Location (UCSC) Chr 5: 95.71 – 95.82 Mb Chr 13: 75.87 – 75.94 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

Rho-related BTB domain-containing protein 3 is a protein that in humans is encoded by the RHOBTB3 gene.[3][4][5]

Function[edit]

RHOBTB3 is a member of the evolutionarily conserved RhoBTB subfamily of Rho GTPases. For background information on RHOBTBs, see RHOBTB1 (MIM 607351).[supplied by OMIM][5]

Model organisms[edit]

Model organisms have been used in the study of RHOBTB3 function. A conditional knockout mouse line, called Rhobtb3tm1a(KOMP)Wtsi[13][14] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[15][16][17]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[11][18] Twenty three tests were carried out on mutant mice and four significant abnormalities were observed.[11] Homozygote mutant males had a decreased body weight and abnormal tooth morphology; females had decreased forepaw grip strength and both sexes had a decreased body length.[11]

References[edit]

  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ Rivero F, Dislich H, Glöckner G, Noegel AA (Mar 2001). "The Dictyostelium discoideum family of Rho-related proteins". Nucleic Acids Research. 29 (5): 1068–79. doi:10.1093/nar/29.5.1068. PMC 29714Freely accessible. PMID 11222756. 
  4. ^ Boureux A, Vignal E, Faure S, Fort P (Jan 2007). "Evolution of the Rho family of ras-like GTPases in eukaryotes". Molecular Biology and Evolution. 24 (1): 203–16. doi:10.1093/molbev/msl145. PMC 2665304Freely accessible. PMID 17035353. 
  5. ^ a b "Entrez Gene: RHOBTB3 Rho-related BTB domain containing 3". 
  6. ^ "Body weight data for Rhobtb3". Wellcome Trust Sanger Institute. 
  7. ^ "Grip strength data for Rhobtb3". Wellcome Trust Sanger Institute. 
  8. ^ "DEXA data for Rhobtb3". Wellcome Trust Sanger Institute. 
  9. ^ "Radiography data for Rhobtb3". Wellcome Trust Sanger Institute. 
  10. ^ "Citrobacter infection data for Rhobtb3". Wellcome Trust Sanger Institute. 
  11. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  12. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  13. ^ "International Knockout Mouse Consortium". 
  14. ^ "Mouse Genome Informatics". 
  15. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410Freely accessible. PMID 21677750. 
  16. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  17. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  18. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837Freely accessible. PMID 21722353. 

Further reading[edit]

  • Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA (Apr 1996). "A "double adaptor" method for improved shotgun library construction". Analytical Biochemistry. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474. 
  • Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA (Apr 1997). "Large-scale concatenation cDNA sequencing". Genome Research. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146Freely accessible. PMID 9110174. 
  • Nagase T, Ishikawa K, Suyama M, Kikuno R, Hirosawa M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (Dec 1998). "Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Research. 5 (6): 355–64. doi:10.1093/dnares/5.6.355. PMID 10048485. 
  • Ramos S, Khademi F, Somesh BP, Rivero F (Oct 2002). "Genomic organization and expression profile of the small GTPases of the RhoBTB family in human and mouse". Gene. 298 (2): 147–57. doi:10.1016/S0378-1119(02)00980-0. PMID 12426103. 
  • Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW (Jun 2004). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". Nature Biotechnology. 22 (6): 707–16. doi:10.1038/nbt971. PMID 15146197.