Jump to content

Rapeseed oil

From Wikipedia, the free encyclopedia

Close-up of canola blooms
Canola flower
Rapeseed oil
Canola field, Willamette Valley, Oregon, May 2017.

Rapeseed oil is one of the oldest known vegetable oils. There are both edible and industrial forms produced from rapeseed, the seed of several cultivars of the plant family Brassicaceae. Historically, it was restricted as a food oil due to its content of erucic acid, which in laboratory studies was shown to be damaging to the cardiac muscle of laboratory animals in high quantities and which imparts a bitter taste, and glucosinolates, which made many parts of the plant less nutritious in animal feed.[1][2] Rapeseed oil from standard cultivars can contain up to 54% erucic acid.[3]

Canola oil is a food-grade version derived from rapeseed cultivars specifically bred for low erucic acid content. It is also known as low erucic acid rapeseed (LEAR) oil and is generally recognized as safe by the United States Food and Drug Administration.[a][4] Canola oil is limited by government regulation to a maximum of 2% erucic acid by weight in the US[4] and the EU,[5] with special regulations for infant food. These low levels of erucic acid do not cause harm in humans.[4][6]

In commerce, non-food varieties are typically called colza oil.[7]

Rapeseed is extensively cultivated in Canada, France, Belgium, Ireland, the United Kingdom, the United States, the Netherlands, Germany, Denmark, Poland, Japan and Slovenia. In France and Denmark especially, the extraction of the oil is an important industry.



The name for rapeseed comes from the Latin word rapum meaning turnip. Turnip, rutabaga (swede), cabbage, Brussels sprouts, and mustard are related to rapeseed. Rapeseed belongs to the genus Brassica. Brassica oilseed varieties are some of the oldest plants cultivated by humanity, with documentation of its use in India 4,000 years ago, and use in China and Japan 2,000 years ago.[8]: 55  Its use in Northern Europe for oil lamps is documented to the 13th century.[8] Rapeseed oil extracts were first put on the market in 1956–1957 as food products, but these suffered from several unacceptable characteristics. That form of rapeseed oil had a distinctive taste and a greenish colour due to the presence of chlorophyll and still contained a higher concentration of erucic acid.[9]

Canola was bred from rapeseed cultivars of B. napus and B. rapa at the University of Manitoba, Canada, by Keith Downey and Baldur R. Stefansson in the early 1970s,[10][11] having then a different nutritional profile than present-day oil in addition to much less erucic acid.[12] Canola was originally a trademark name of the Rapeseed Association of Canada; the name is a portmanteau of "can" from Canada and "ola" from "oil".[13][14] Canola is now a generic term for edible varieties of rapeseed oil in North America and Australasia;[15] the change in name also serves to distinguish it from natural rapeseed oil, which has much higher erucic acid content.[16]

A genetically engineered rapeseed that is tolerant to the herbicide Roundup (glyphosate) was first introduced to Canada in 1995 (Roundup Ready). A genetically modified variety developed in 1998 is considered to be the most disease- and drought-resistant canola variety to date. In 2009, 90% of the Canadian crop was herbicide-tolerant.[17] In 2005, 87% of the canola grown in the US was genetically modified.[18] In 2011, out of the 31 million hectares of canola grown worldwide, 8.2 million (26%) were genetically modified.[19]

A 2010 study conducted in North Dakota found glyphosate- or glufosinate-resistance transgenes in 80% of wild natural rapeseed plants, and a few plants that were resistant to both herbicides. This may reduce the effectiveness of the herbicide tolerance trait for weed control over time, as the weed species could also become tolerant to the herbicide. However, one of the researchers agrees that "feral populations could have become established after trucks carrying cultivated GM seeds spilled some of their load during transportation". She also notes that the GM canola results they found may have been biased as they only sampled along roadsides.[20]

Genetically modified canola attracts a price penalty compared to non-GM canola; in Western Australia, it is estimated to be 7.2% on average.[21]

Production and trade

Rapeseed oil production – 2019[22]
Country millions of tonnes
 Canada 4.2
 China 3.1
 India 2.5
 France 1.7
World total 24.4
Canola field in Manitoba, Canada
Rapeseed oil is one of the most commonly produced vegetable oils globally.

In 2019, world production of rapeseed oil was 24 million tonnes, led by Canada, China, and India as the largest producers, accounting together for 40% of the world total.[22] Canada was the world's largest exporter of rapeseed oil in 2019, shipping 3.2 million tonnes or approximately 76% of its total production.[22]

The benchmark price for worldwide canola trade is the ICE Futures Canada (formerly Winnipeg Commodity Exchange) canola futures contract.[23]

In China, rapeseed meal is mostly used as a soil fertilizer rather than for animal feed,[24] while canola is used mainly for frying food. In the words of one observer, "China has a vegetable oil supply shortage of 20 million tonnes per year. It covers a large percentage of that shortage with soybean imports from Brazil, the U.S. and Argentina."[25]

GMO regulation


There are several forms of genetic modification, such as herbicide (glyphosate and glufosinate, for example) tolerance and different qualities in canola oil. Regulation varies from country to country; for example, glyphosate-resistant canola has been approved in Australia, Canada, China, Korea, Mexico, Philippines, and the US, while Laurical, a product with a different oil composition, has been approved for growing only in Canada and the US.[26]

In 2003, Australia's gene technology regulator approved the release of canola genetically modified to make it resistant to glufosinate ammonium, a herbicide.[27] The introduction of the genetically modified crop to Australia generated considerable controversy.[28] Canola is Australia's third biggest crop, and is used often by wheat farmers as a break crop to improve soil quality. As of 2008, the only genetically modified crops in Australia were canola, cotton, and carnations.[29][30]

GMO litigation


Genetically modified canola has become a point of controversy and contentious legal battles. In one high-profile case (Monsanto Canada Inc v. Schmeiser) the Monsanto Company sued Percy Schmeiser for patent infringement after he replanted canola seed he had harvested from his field, which he discovered was contaminated with Monsanto's patented glyphosate-tolerant canola by spraying it with glyphosate, leaving only the resistant plants. The Canadian Supreme Court ruled that Percy was in violation of Monsanto's patent because he knowingly isolated and replanted the resistant seed that he had harvested.[31][dubiousdiscuss] On 19 March 2008, Schmeiser and Monsanto Canada Inc. came to an out-of-court settlement whereby Monsanto would pay for the clean-up costs of the contamination, which came to a total of C$660.[32] In Western Australia, in the Marsh v Baxter case, a GM canola farmer was sued by his organic neighbour because GM canola contamination led to the loss of organic certification. Although the facts of the case and the losses to the organic farmer were agreed between the parties, the judge did not find the GM farmer liable for the losses.[33]

Production process

Canola oil

Canola oil is made at a processing facility by slightly heating and then crushing the seed.[34] Almost all commercial canola oil is then extracted using hexane solvent,[35] which is recovered at the end of processing. Finally, the canola oil is refined using water precipitation and organic acid to remove gums and free fatty acids, filtering to remove color, and deodorizing using steam distillation.[34] Sometimes the oil is also bleached for a lighter color.[36] The average density of canola oil is 0.92 g/ml (7.7 lb/US gal; 9.2 lb/imp gal).[37]

Cold-pressed and expeller-pressed canola oil are also produced on a more limited basis. About 44% of a seed is oil, with the remainder as a canola meal used for animal feed.[34] About 23 kg (51 lb) of canola seed makes 10 L (2.64 US gal) of canola oil. Canola oil is a key ingredient in many foods. Its reputation as a healthful oil has created high demand in markets around the world,[38] and overall it is the third-most widely consumed vegetable oil, after soybean oil and palm oil.[39]

The oil has many non-food uses and, like soybean oil, is often used interchangeably with non-renewable petroleum-based oils in products,[38] including industrial lubricants, biodiesel, candles, lipsticks, and newspaper inks.

Canola vegetable oils certified as organic are required to be from non-GMO rapeseed.[40]

Nutrition and health

Canola oil
Nutritional value per 100 grams
Energy3,701 kJ (885 kcal)
0 g
Starch0 g
Sugars0 g
Dietary fiber0 g
100 g
Saturated7.4 g
Trans0.4 g
Monounsaturated63.3 g
Polyunsaturated28.1 g
8 g
20 g
0 g
Vitamin A equiv.
0 μg
0 μg
0 μg
Vitamin A0 IU
Thiamine (B1)
0 mg
Riboflavin (B2)
0 mg
Niacin (B3)
0 mg
Pantothenic acid (B5)
0 mg
Vitamin B6
0 mg
Folate (B9)
0 μg
Vitamin B12
0 μg
Vitamin C
0 mg
Vitamin E
17.5 mg
Vitamin K
71.3 μg
0 mg
0 mg
0 mg
0 mg
0 mg
0 mg
0 mg
0 mg
Other constituentsQuantity
Water0 g

Percentages estimated using US recommendations for adults,[41] except for potassium, which is estimated based on expert recommendation from the National Academies.[42]

Canola oil is considered safe for human consumption,[43][44] and has a relatively low amount of saturated fat, a substantial amount of monounsaturated fat, with roughly a 2:1 mono- to polyunsaturated fats ratio.[45]

In 2006, canola oil was given a qualified health claim by the United States Food and Drug Administration for lowering the risk of coronary heart disease, resulting from its significant content of unsaturated fats; the allowed claim for food labels states:[46]

"Limited and not conclusive scientific evidence suggests that eating about 1 12 tablespoons (19 grams) of canola oil daily may reduce the risk of coronary heart disease due to the unsaturated fat content in canola oil. To achieve this possible benefit, canola oil is to replace a similar amount of saturated fat and not increase the total number of calories you eat in a day. One serving of this product contains [x] grams of canola oil."

A 2013 review, sponsored by the Canola Council of Canada and the U.S. Canola Association, concluded there was a substantial reduction in total cholesterol and low-density lipoprotein (LDL) cholesterol, and an increase in tocopherol levels and improved insulin sensitivity, compared with other sources of dietary fat.[45] A 2014 review of health effects from consuming plant oils rich in alpha-linolenic acid, including canola, stated that there was moderate benefit for lower risk of cardiovascular diseases, bone fractures, and type-2 diabetes.[47]

A 2019 review of randomized clinical trials found that canola oil consumption reduces total cholesterol (TC) and LDL compared to sunflower oil and saturated fat.[48] Consumption of canola oil has been shown to reduce body weight when compared with saturated fat.[49]

Regarding individual components, canola oil is low in saturated fat and contains both omega-6 and omega-3 fatty acids in a ratio of 2:1. It is high in monounsaturated fats, which may decrease the risk of heart disease.[50]

Erucic acid

Compound Family % of total
Oleic acid ω-9 61%[51]
Linoleic acid ω-6 21%[51]
Alpha-linolenic acid ω-3 11%[51]
Saturated fatty acids 7%[51]
Palmitic acid 4%[52]
Stearic acid 2%[52]
Trans fat 0.4%[54]
Erucic acid 0.01%[55]

Although wild rapeseed oil contains significant amounts of erucic acid,[58] the cultivars used to produce commercial, food-grade canola oil were bred to contain less than 2% erucic acid,[4] an amount deemed not significant as a health risk. The low-erucic trait was due to two mutations changing the activity of LEA1 and KCS17.[59][60]

The erucic acid content in canola oil has been reduced over the years. In western Canada, a reduction occurred from the average content of 0.5% between 1987 and 1996[61] to a current content of 0.01% from 2008 to 2015.[55] Other reports also show a content lower than 0.1% in Australia[56] and Brazil.[57]

To date, no health effects have been associated with dietary consumption of erucic acid by humans; but tests of erucic acid metabolism in other species imply that higher levels may be detrimental.[62][63] Canola oil produced using genetically modified plants has also not been shown to explicitly produce adverse effects.[64]

It is usually accepted that canola oil poses no unusual health risks for humans.[63] Canola oil is generally recognized as safe by the United States Food and Drug Administration.[4][44]



Another chemical change in canola is the reduction of glucosinolates.[59] As the oil is extracted, most of the glucosinolates are concentrated into the seed meal, an otherwise rich source of protein. Livestock have varying levels of tolerance to glucosinolates intake, with some being poisoned relatively easily.[65][1] A small amount of glucosinolates also enters the oil, imparting a pungent odor.[66]

Further reduction of glucosinolate levels remains important for the use of rapeseed meal in animal feed.[67][68]

It is not completely clear which genetic changes from plant breeding resulted in the current reduction in this group of chemicals.[59]

Comparison to other vegetable oils

Properties of vegetable oils[69][70]
The nutritional values are expressed as percent (%) by mass of total fat.
Type Processing
fatty acids
fatty acids
fatty acids
Smoke point
Total[69] Oleic
Total[69] α-Linolenic
Avocado[72] 11.6 70.6 52–66
13.5 1 12.5 12.5:1 250 °C (482 °F)[74]
Brazil nut[75] 24.8 32.7 31.3 42.0 0.1 41.9 419:1 208 °C (406 °F)[76]
Canola[77] 7.4 63.3 61.8 28.1 9.1 18.6 2:1 204 °C (400 °F)[78]
Coconut[79] 82.5 6.3 6 1.7 0.019 1.68 88:1 175 °C (347 °F)[76]
Corn[80] 12.9 27.6 27.3 54.7 1 58 58:1 232 °C (450 °F)[78]
Cottonseed[81] 25.9 17.8 19 51.9 1 54 54:1 216 °C (420 °F)[78]
Cottonseed[82] hydrogenated 93.6 1.5 0.6 0.2 0.3 1.5:1
Flaxseed/linseed[83] 9.0 18.4 18 67.8 53 13 0.2:1 107 °C (225 °F)
Grape seed   10.4 14.8 14.3   74.9 0.15 74.7 very high 216 °C (421 °F)[84]
Hemp seed[85] 7.0 9.0 9.0 82.0 22.0 54.0 2.5:1 166 °C (330 °F)[86]
High-oleic safflower oil[87] 7.5 75.2 75.2 12.8 0 12.8 very high 212 °C (414 °F)[76]
Olive, Extra Virgin[88] 13.8 73.0 71.3 10.5 0.7 9.8 14:1 193 °C (380 °F)[76]
Palm[89] 49.3 37.0 40 9.3 0.2 9.1 45.5:1 235 °C (455 °F)
Palm[90] hydrogenated 88.2 5.7 0
Peanut[91] 16.2 57.1 55.4 19.9 0.318 19.6 61.6:1 232 °C (450 °F)[78]
Rice bran oil 25 38.4 38.4 36.6 2.2 34.4[92] 15.6:1 232 °C (450 °F)[93]
Sesame[94] 14.2 39.7 39.3 41.7 0.3 41.3 138:1
Soybean[95] 15.6 22.8 22.6 57.7 7 51 7.3:1 238 °C (460 °F)[78]
Soybean[96] partially hydrogenated 14.9 43.0 42.5 37.6 2.6 34.9 13.4:1
Sunflower[97] 8.99 63.4 62.9 20.7 0.16 20.5 128:1 227 °C (440 °F)[78]
Walnut oil[98] unrefined 9.1 22.8 22.2 63.3 10.4 52.9 5:1 160 °C (320 °F)[99]



Apart from its use for human consumption, rapeseed oil is extensively used as a lubricant for machinery. It was widely used in European domestic lighting before the advent of coal (city) gas or kerosene. It was the preferred oil for train pot lamps, and was used for lighting railway coaches in the United Kingdom before gas lighting, and later electric lighting, were adopted. Burned in a Carcel lamp, it was part of the definition of the French standard measure for illumination, the carcel, for most of the nineteenth century. In lighthouses, for example in early Canada, rapeseed oil was used before the introduction of mineral oil. Rapeseed oil was used with the Argand burner because it was cheaper than whale oil.[100] Rapeseed oil was burned to a limited extent in the Confederacy during the American Civil War.[101]

Rapeseed oil was used in Gombault's Caustic Balsam,[102] a popular horse and human liniment at the turn of the 20th century.

Among the more unusual applications of rapeseed oil is the calming of choppy seas, where the oil modifies the surface tension of the water and rapidly smooths the surface. For this purpose, rapeseed oil was carried in ship's lifeboats.[103][better source needed]



Rapeseed oil is used as diesel fuel, either as biodiesel, straight in heated fuel systems, or blended with petroleum distillates for powering motor vehicles. Biodiesel may be used in pure form in newer engines without engine damage and is frequently combined with fossil-fuel diesel in ratios varying from 2% to 20% biodiesel. Owing to the costs of growing, crushing, and refining rapeseed biodiesel, rapeseed-derived biodiesel from new oil costs more to produce than standard diesel fuel, so diesel fuels are commonly made from the used oil. Rapeseed oil is the preferred oil stock for biodiesel production in most of Europe, accounting for about 80% of the feedstock,[citation needed] partly because rapeseed produces more oil per unit of land area compared to other oil sources, such as soybeans, but primarily because canola oil has a significantly lower gel point than most other vegetable oils.[citation needed]

Other edible rapeseed oils


Some less-processed versions of rapeseed oil are used for flavor in some countries. Chinese rapeseed oil was originally extracted from the field mustard. In the 19th century, rapeseed (B. rapa) was introduced by European traders, and local farmers crossed the new plant with field mustard to produce semi-winter rapeseed.[104] Their erucic acid content was reduced to modern "canola" levels by breeding with Canadian low-erucic acid cultivar "ORO".[60][105] Chinese rapeseed oil has a distinctive taste and a greenish colour due to the different processing method: seeds are roasted and expeller-pressed to obtain the oil. A centrifuge is used to remove solids, followed by a heating step. The resultant oil is heat-stable and fundamental to Sichuan cuisine.[106]

In India, mustard oil is used in cooking.[107] In the United Kingdom and Ireland, some chefs use a "cabbagey"-tasting rapeseed oil processed by cold-pressing.[108] This cold process means that the oil has a low smoke point, and is therefore unsuitable for frying in Sichuan cuisine, for example.[109]

Spanish rapeseed poisoning outbreak


In 1981, there was an oil poisoning outbreak, later known as toxic oil syndrome that was attributed to people consuming what they thought was olive oil but turned out to be rapeseed oil that had been denatured with 2% aniline (phenylamine). The substance was intended for industrial use but had been illegally refined in an attempt to remove the aniline.[110] It was then fraudulently sold as olive oil, mainly in street markets, mostly in the Madrid area.[111][112]

See also



  1. ^ 21 CFR 184.1555 also recognizes fully-hydrogenated rapeseed oil and superglycerinated fully hydrogenated rapeseed oil as GRAS, without limits on erucic acid levels. However, these two are not to be used as a regular cooking oil, but as an emusifier in foods in limited quantities.[4]
  1. ^ a b O'Brien 2008, p. 37.
  2. ^ Balakhial, Amir; Naserian, Abasali; Heravi moussavi, Alireza; Valizadeh, Reza (2022). "Effect of Replacing Corn Silage with Canola Silage on Feed Intake, Nutrient Digestibility, Milk Yield, and Thyroid Hormones of Lactating Dairy Cows". Farm Animal Health and Nutrition. 1 (1): 1–5. doi:10.58803/fahn.v1i1.2.
  3. ^ Sahasrabudhe 1977, p. 323.
  4. ^ a b c d e f "21 CFR 184.1555 "Rapeseed oil"". US Food and Drug Administration. 1 April 2010. Retrieved 19 April 2020. (ecfr.gov version)
  5. ^ "Regulation (EC) No 1881/2006 as regards maximum levels of erucic acid and hydrocyanic acid in certain foodstuffs". eur-lex.europa.eu. Retrieved 21 April 2021.
  6. ^ "Commission Directive 80/891/EEC of 25 July 1980 relating to the Community method of analysis for determining the erucic acid content in oils and fats intended to be used as such for human consumption and foodstuffs containing added oils or fats". Official Journal of the European Communities. 254. European Commission. 27 September 1980.
  7. ^ Velíšek, Jan (2013). The Chemistry of Food. Wiley. p. 102. ISBN 978-1-118-38383-4.
  8. ^ a b Snowdon, R.; Lühs, W.; Friedt, W. (2007). "Oilseed Rape". In Kole, Chittaranjan (ed.). Oilseeds. Springer Science & Business Media. pp. 55–114. ISBN 978-3-540-34388-2.
  9. ^ Fan, Liuping; Eskin, N.A. Michael. "Handbook of Antioxidants for Food Preservation". Science Direct. Woodhead Publishing Series in Food Science, Technology and Nutrition. Retrieved 6 April 2021.
  10. ^ "Richard Keith Downey: Genetics". science.ca. 2007. Retrieved 29 December 2008.
  11. ^ Pederson, Anne-marie; Storgaard, A.K. (15 December 2015). "Baldur Rosmund Stefansson". The Canadian Encyclopedia. Retrieved 4 September 2019.
  12. ^ Barthet, V. "Canola". The Canadian Encyclopedia. Archived from the original on 27 February 2014. Retrieved 29 December 2008.
  13. ^ Wrigley, Colin W.; Corke, Harold; Seetharaman, Koushik; Faubion, Jonathan (17 December 2015). Encyclopedia of Food Grains. Academic Press. p. 238. ISBN 978-1785397622.
  14. ^ Canola Council of Canada (2016). "What is Canola?". Retrieved 16 December 2013.
  15. ^ "Has canola become a generic trademark?". genericides.org. 21 April 2021. Archived from the original on 20 October 2021. Retrieved 13 May 2021.
  16. ^ "Erucic Acid - an overview". ScienceDirect Topics.
  17. ^ Beckie, Hugh et al (Autumn 2011) GM Canola: The Canadian Experience Archived 4 April 2016 at the Wayback Machine Farm Policy Journal, Volume 8 Number 8, Autumn Quarter 2011. Retrieved 20 August 2012
  18. ^ Johnson, Stanley R. et al Quantification of the Impacts on US Agriculture of Biotechnology-Derived Crops Planted in 2006 National Center for Food and Agricultural Policy, Washington DC, February 2008. Retrieved 12 August 2010.
  19. ^ "Biotech Canola – Annual Update 2011" (PDF). International Service for the Acquisition of Agri-Biotech Applications. Archived from the original (PDF) on 30 May 2013. Retrieved 26 May 2013.
  20. ^ Gilbert, Natasha (2010). "GM crop escapes into the American wild". Nature. doi:10.1038/news.2010.393.
  21. ^ Paull, John (2019). "Genetically Modified (GM) Canola: Price Penalties and Contaminations". Biomedical Journal of Scientific & Technical Research. 17 (2): 1–4. doi:10.26717/BJSTR.2019.17.002965.
  22. ^ a b c "Rapeseed oil production, 2019; Crops/Regions/World list/Production Quantity; unofficial data (pick lists)". UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT). 2022. Retrieved 17 March 2022.
  23. ^ "ICE Futures: Canola". Intercontinental Exchange, Inc. 2017. Retrieved 4 September 2017.
  24. ^ Bonjean, Alain. P.; Dequidt, Céline; Sang, Tina; Limagrain, Groupe (18 November 2016). "Rapeseed in China". OCL. 23 (6): D605. doi:10.1051/ocl/2016045. ISSN 2272-6977.
  25. ^ "Why China needs canola imports". Country Guide. Glacier FarmMedia Limited Partnership. 12 February 2018.
  26. ^ eurofins. Last updated 31 January 2014 Genetically Modified Canola Archived 20 June 2018 at the Wayback Machine
  27. ^ "GM canola gets the green light". Sydney Morning Herald. 1 April 2003. Retrieved 20 October 2007.
  28. ^ Price, Libby (6 September 2005). "Network of concerned farmers demands tests from Bayer". ABC Rural Victoria. Australian Broadcasting Corporation. Archived from the original on 3 December 2005.{{cite news}}: CS1 maint: unfit URL (link)
    "Greenpeace has the last laugh on genetic grains talks". Australian Broadcasting Corporation. 13 March 2003. Archived from the original on 5 May 2004.{{cite news}}: CS1 maint: unfit URL (link)
    Cauchi, Stephen (25 October 2003). "GM: food for thought". The Age. Retrieved 20 October 2007.<
  29. ^ "GM Crops and Stockfeed" (PDF). Archived from the original (PDF) on 14 April 2012. Retrieved 9 October 2012.
  30. ^ GM Carnations in Australia Archived 8 May 2012 at the Wayback Machine
  31. ^ Schmeiser v. Monsanto Canada Inc., 2 F.C. 165 (Federal Court of Appeal Decisions, Canada. 4 September 2002).
  32. ^ Hartley, Matt (20 March 2008). "Grain Farmer Claims Moral Victory in Seed Battle Against Monsanto". Globe and Mail. Archived from the original on 2 February 2014. Retrieved 14 May 2016.
  33. ^ Paull, John (2015). "Gmos and Organic Agriculture: Six Lessons from Australia". Agriculture and Forestry. 61 (1): 7–14. doi:10.17707/AgricultForest.61.1.01.
  34. ^ a b c "Steps in Oil and Meal Processing". Canola Council of Canada. 2016. Retrieved 30 April 2016.
  35. ^ Crosby, Guy (2017). "Ask the Expert: Concerns about canola oil". The Nutrition Source. Harvard T.H. Chan School of Public Health. Retrieved 23 April 2017.
  36. ^ "How It's Made - Canola Oil". YouTube.
  37. ^ "Section 3.1: Leaking Tank Experiments with Orimulsion and Canola Oil" (PDF). NOAA Technical Memorandum NOS OR&R 6. National Ocean Service. December 2001.
  38. ^ a b "What is canola oil?". Canola Council of Canada. 2016. Retrieved 30 April 2016.
  39. ^ Ash, Mark (15 March 2016). "Soybeans & Oil Crops". Economic Research Service, US Department of Agriculture. Archived from the original on 23 April 2016. Retrieved 30 April 2016.
  40. ^ "Canola Oil Myths and Truths". UC Berkeley School of Public Health. 17 February 2015. Retrieved 23 April 2017.
  41. ^ United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". FDA. Archived from the original on 27 March 2024. Retrieved 28 March 2024.
  42. ^ National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium (2019). Oria, Maria; Harrison, Meghan; Stallings, Virginia A. (eds.). Dietary Reference Intakes for Sodium and Potassium. The National Academies Collection: Reports funded by National Institutes of Health. Washington, DC: National Academies Press (US). ISBN 978-0-309-48834-1. PMID 30844154. Archived from the original on 9 May 2024. Retrieved 21 June 2024.
  43. ^ Dupont J, White PJ, Johnston HA, McDonald BE, Grundy SM, Bonanome A (October 1989). "Food safety and health effects of canola oil". Journal of the American College of Nutrition. 8 (5): 360–375. doi:10.1080/07315724.1989.10720311. PMID 2691543.
  44. ^ a b Zeratsky, Katherine (2009). "Canola Oil: Does it Contain Toxins?". Mayo Clinic. Retrieved 10 August 2011.
  45. ^ a b Lin L, Allemekinders H, Dansby A, Campbell L, Durance-Tod S, Berger A, Jones PJ (2013). "Evidence of health benefits of canola oil". Nutr. Rev. 71 (6): 370–85. doi:10.1111/nure.12033. PMC 3746113. PMID 23731447.
  46. ^ Schneeman, B.O. (6 October 2006). "Qualified Health Claims, Letter of Enforcement Discretion U.S. Food and Drug Administration: Unsaturated Fatty Acids from Canola Oil and Reduced Risk of Coronary Heart Disease". US Food and Drug Administration. Retrieved 3 September 2008.
  47. ^ Rajaram, S (2014). "Health benefits of plant-derived α-linolenic acid". The American Journal of Clinical Nutrition. 100 (Suppl 1): 443S–8S. doi:10.3945/ajcn.113.071514. PMID 24898228.
  48. ^ Ghobadi S, Hassanzadeh-Rostami Z, Mohammadian F, Zare M, Faghih S (2019). "Effects of Canola Oil Consumption on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials". Journal of the American College of Nutrition. 38 (2): 185–196. doi:10.1080/07315724.2018.1475270. PMID 30381009. S2CID 53177789.
  49. ^ Raeisi-Dehkordi H, Amiri M, Humphries KH, Salehi-Abargouei A (2019). "The Effect of Canola Oil on Body Weight and Composition: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials". Advances in Nutrition. 10 (3): 419–432. doi:10.1093/advances/nmy108. PMC 6520036. PMID 30809634.
  50. ^ "Protect Your Heart: Choose Fats Wisely" (PDF). American Diabetes Association. 2004. Archived from the original (PDF) on 12 September 2008. Retrieved 3 September 2008.
  51. ^ a b c d "Comparison of Dietary Fats Chart" (PDF). Canola Council of Canada. Archived from the original (PDF) on 23 September 2006. Retrieved 3 September 2008.
  52. ^ a b c USDA National Nutrient Database for Standard Reference, Release 21 (2008)
  53. ^ DeFilippis, Andrew P.; Sperling, Laurence S. (2006). "Understanding omega-3's" (PDF). American Heart Journal. 151 (3): 564–570. doi:10.1016/j.ahj.2005.03.051. PMID 16504616. Archived from the original (PDF) on 22 October 2007.
  54. ^ USDA National Nutrient Database for Standard Reference, Release 22 (2009)
  55. ^ a b J. Barthet, Véronique J. (2015). "Quality of western Canadian Canola 2015" (PDF) (Press release). Canadian Grain Research Laboratory: Canadian Grain Commission. ISSN 1700-2222. Retrieved 21 December 2016.
  56. ^ a b D.E., Seberry; D.W., McCaffery; T.M., Kingham (2016). "Quality of Australian canola 2015–16" (PDF) (Press release). Australia: NSW Department of Primary Industries – Australian Oilseeds Federation. ISSN 1322-9397. Retrieved 21 December 2016.
  57. ^ a b Heidy Aguilera Fuentes, Paula; Jose Ogliaria, Paulo; Carlos Deschamps, Francisco; Barrera Arellano, Daniel; Mara Block, Jane (2011). "Centro de Ciências Agrárias" [Agricultural Science Center]. Avaliação da Qualidade de Óleos de Soja, Canola, Milho e Girassol Durante o Armazenamento (PDF) (Thesis) (in Portuguese). Florianópolis, Brazil: Universidade Federal de Santa Catarina. OCLC 817268651. Retrieved 21 December 2016.
  58. ^ Sahasrabudhe, M. R. (1977). "Crismer values and erucic acid contents of rapeseed oils". Journal of the American Oil Chemists' Society. 54 (8): 323–324. doi:10.1007/BF02672436. S2CID 84400266.
  59. ^ a b c Hu, Jihong; Chen, Biyun; Zhao, Jing; Zhang, Fugui; Xie, Ting; Xu, Kun; Gao, Guizhen; Yan, Guixin; Li, Hongge; Li, Lixia; Ji, Gaoxiang; An, Hong; Li, Hao; Huang, Qian; Zhang, Meili; Wu, Jinfeng; Song, Weilin; Zhang, Xiaojun; Luo, Yujie; Chris Pires, J.; Batley, Jacqueline; Tian, Shilin; Wu, Xiaoming (May 2022). "Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding". Nature Genetics. 54 (5): 694–704. doi:10.1038/s41588-022-01055-6. PMID 35484301. S2CID 248430415. We found that FAE1 (BnaA08g11130D) and KCS17 (BnaA08g11140D) were the genes associated with fatty acid elongation for erucic acid (C22:1) (–log 10(P) = 10.997) ...
  60. ^ a b Wu, Gang; Wu, Yuhua; Xiao, Ling; Li, Xiaodan; Lu, Changming (February 2008). "Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene". Theoretical and Applied Genetics. 116 (4): 491–499. doi:10.1007/s00122-007-0685-z. PMID 18075728. S2CID 7459552. Since then almost all of the LEA rapeseed cultivars have been developed in China and other countries by traditional crossing method with the LEA gene source from the ORO (Harvey and Downey 1963).
  61. ^ DeClercq, D.R.; Daun, J.K.; Tipples, K.H. (1997). "Quality of Western Canadian Canola 1997" (PDF) (Press release). Canadian Grain Research Laboratory: Canadian Grain Commission. ISSN 0836-1657. Retrieved 21 December 2016.
  62. ^ Food Standards Australia New Zealand (June 2003) Erucic acid in food: A Toxicological Review and Risk Assessment Technical report series No. 21; Page 4 paragraph 1; ISBN 0-642-34526-0, ISSN 1448-3017
  63. ^ a b Luger, C.L.; et al. (2014). "Food Safety and Foodborne Toxicants". In A. Wallace Hayes; Claire L. Kruger (eds.). Hayes' Principles and Methods of Toxicology (6th ed.). CRC Press. pp. 646–657. ISBN 9781842145371. In humans. however. although the long-term use of Lorenzo's oil (oleic acid and erucic acid) in the treatment of adrenoleukodystrophy or adrenomyeloneuropathy leads to thrombocytopenia and lymphopenia (Unkrig et al. 1994), adverse effects from dietary consumption of erucic acid have not been reported.
  64. ^ Reddy, Chada S.; Hayes, A. Wallace (2007). "Foodborne Toxicants". In Hayes, A. Wallace (ed.). Principles and methods of toxicology (5th ed.). London, UK: Informa Healthcare. p. 640. ISBN 978-0-8493-3778-9.
  65. ^ European Food Safety Authority (EFSA) (2008) Glucosinolates as undesirable substances in animal feed ‐ scientific opinion of the panel on contaminants in the food chain. EFSA J. 6, 590.
  66. ^ Zhou, Qi; Tang, Hu; Jia, Xiao; Zheng, Chang; Huang, Fenghong; Zhang, Min (1 January 2018). "Distribution of glucosinolate and pungent odors in rapeseed oils from raw and microwaved seeds". International Journal of Food Properties. 21 (1): 2296–2308. doi:10.1080/10942912.2018.1514632.
  67. ^ Shahidi, F.; Naczk, M. (1990). "Removal of Glucosinolates and Other Antinutrients from Canola and Rapeseed by Methanol/Ammonia Processing". Canola and Rapeseed. pp. 291–306. doi:10.1007/978-1-4615-3912-4_17. ISBN 978-1-4613-6744-4.
  68. ^ Jhingan, Srijan; Harloff, Hans-Joachim; Abbadi, Amine; Welsch, Claudia; Blümel, Martina; Tasdemir, Deniz; Jung, Christian (9 February 2023). "Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes". Scientific Reports. 13 (1): 2344. Bibcode:2023NatSR..13.2344J. doi:10.1038/s41598-023-28661-6. PMC 9911628. PMID 36759657.
  69. ^ a b c "US National Nutrient Database, Release 28". United States Department of Agriculture. May 2016. All values in this table are from this database unless otherwise cited or when italicized as the simple arithmetic sum of other component columns.
  70. ^ "Fats and fatty acids contents per 100 g (click for "more details"). Example: Avocado oil (user can search for other oils)". Nutritiondata.com, Conde Nast for the USDA National Nutrient Database, Standard Release 21. 2014. Retrieved 7 September 2017. Values from Nutritiondata.com (SR 21) may need to be reconciled with most recent release from the USDA SR 28 as of Sept 2017.
  71. ^ "USDA Specifications for Vegetable Oil Margarine Effective August 28, 1996" (PDF).
  72. ^ "Avocado oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  73. ^ Ozdemir F, Topuz A (2004). "Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period" (PDF). Food Chemistry. Elsevier. pp. 79–83. Archived from the original (PDF) on 16 January 2020. Retrieved 15 January 2020.
  74. ^ Wong M, Requejo-Jackman C, Woolf A (April 2010). "What is unrefined, extra virgin cold-pressed avocado oil?". Aocs.org. The American Oil Chemists' Society. Retrieved 26 December 2019.
  75. ^ "Brazil nut oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  76. ^ a b c d Katragadda HR, Fullana A, Sidhu S, Carbonell-Barrachina ÁA (2010). "Emissions of volatile aldehydes from heated cooking oils". Food Chemistry. 120: 59–65. doi:10.1016/j.foodchem.2009.09.070.
  77. ^ "Canola oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  78. ^ a b c d e f Wolke RL (16 May 2007). "Where There's Smoke, There's a Fryer". The Washington Post. Retrieved 5 March 2011.
  79. ^ "Coconut oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  80. ^ "Corn oil, industrial and retail, all purpose salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  81. ^ "Cottonseed oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  82. ^ "Cottonseed oil, industrial, fully hydrogenated, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  83. ^ "Linseed/Flaxseed oil, cold pressed, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  84. ^ Garavaglia J, Markoski MM, Oliveira A, Marcadenti A (2016). "Grape Seed Oil Compounds: Biological and Chemical Actions for Health". Nutrition and Metabolic Insights. 9: 59–64. doi:10.4137/NMI.S32910. PMC 4988453. PMID 27559299.
  85. ^ Callaway J, Schwab U, Harvima I, Halonen P, Mykkänen O, Hyvönen P, Järvinen T (April 2005). "Efficacy of dietary hempseed oil in patients with atopic dermatitis". The Journal of Dermatological Treatment. 16 (2): 87–94. doi:10.1080/09546630510035832. PMID 16019622. S2CID 18445488.
  86. ^ Melina V. "Smoke points of oils" (PDF). veghealth.com. The Vegetarian Health Institute.
  87. ^ "Safflower oil, salad or cooking, high oleic, primary commerce, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  88. ^ "Olive oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  89. ^ "Palm oil, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  90. ^ "Palm oil, industrial, fully hydrogenated, filling fat, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  91. ^ "Oil, peanut". FoodData Central. usda.gov.
  92. ^ Orthoefer FT (2005). "Chapter 10: Rice Bran Oil". In Shahidi F (ed.). Bailey's Industrial Oil and Fat Products. Vol. 2 (6th ed.). John Wiley & Sons, Inc. p. 465. doi:10.1002/047167849X. ISBN 978-0-471-38552-3.
  93. ^ "Rice bran oil". RITO Partnership. Retrieved 22 January 2021.
  94. ^ "Oil, sesame, salad or cooking". FoodData Central. fdc.nal.usda.gov. 1 April 2019.
  95. ^ "Soybean oil, salad or cooking, fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  96. ^ "Soybean oil, salad or cooking, (partially hydrogenated), fat composition, 100 g". US National Nutrient Database, Release 28, United States Department of Agriculture. May 2016. Retrieved 6 September 2017.
  97. ^ "FoodData Central". fdc.nal.usda.gov.
  98. ^ "Walnut oil, fat composition, 100 g". US National Nutrient Database, United States Department of Agriculture.
  99. ^ "Smoke Point of Oils". Baseline of Health. Jonbarron.org.
  100. ^ "USQUE AD MARE - Early Lights - Canadian Coast Guard". Ccg-gcc.gc.ca. 31 March 2008. Retrieved 14 March 2010.
  101. ^ Mallett, John W. "How the South got chemicals during the war". Southern Historical Society Papers. 31: 101.
  102. ^ "Gombaults". Racehorseherbal.com. Archived from the original on 28 November 2010. Retrieved 14 March 2010. Note that the ingredients listed in this link are similar to, but not the same as, the list on the actual bottle.
  103. ^ "Oil Tested in Storms at Sea". The New York Times. 4 March 1893. Retrieved 14 March 2010. Attached to a canvas sea-anchor was another small punctured canvas bag that was filled with rapeseed oil. When the sea-anchor was streamed, especially in high seas, the wind and wave action would blow the boat downwind leaving the sea-anchor up to windward where the leaking oil would effectively smooth the approaching waves. oilnews
  104. ^ "Southwest China's Foundational Rapeseed Oil". New Cookery Recipes. Retrieved 6 April 2021.
  105. ^ Hu, Shengwu; Yu, Chengyu; Zhao, Huixian; Sun, Genlou; Zhao, Suolao; Vyvadilova, Miroslava; Kucera, Vratislav (March 2007). "Genetic diversity of Brassica napus L. Germplasm from China and Europe assessed by some agronomically important characters". Euphytica. 154 (1–2): 9–16. doi:10.1007/s10681-006-9263-8. S2CID 40177767. Using these canola varieties as parents, Chinese breeders have suc- cessively developed a series of new varieties adapted to local condition.
  106. ^ Chinese Cooking Demystified (24 February 2020). "Southwest China's Foundational Rapeseed Oil (菜籽油简介)". YouTube. Archived from the original on 18 December 2020. Retrieved 19 March 2020.
  107. ^ Sen, Indrani (1 November 2011). "American Chefs Discover Mustard Oil". The New York Times.
  108. ^ Thring, Oliver (12 June 2012). "The rise of rapeseed oil". The Guardian.
  109. ^ "Which oil should I use for frying?". AkerCare. Aker Solutions. Retrieved 6 April 2021.
  110. ^ Gelpí E, de la Paz MP, Terracini B, Abaitua I, de la Cámara AG, Kilbourne EM, Lahoz C, Nemery B, Philen RM, Soldevilla L, Tarkowski S (May 2002). "The Spanish toxic oil syndrome 20 years after its onset: a multidisciplinary review of scientific knowledge". Environmental Health Perspectives. 110 (5). US National Library of Medicine National Institutes of Health: 457–464. doi:10.1289/ehp.110-1240833. PMC 1240833. PMID 12003748.
  111. ^ "Factbox: Fake olive oil scandal that caused Spain's worst food poisoning epidemic in 1981". Reuters. 19 October 2021.
  112. ^ Westfall, Sammy (19 October 2021). "Victims of a 1981 mass cooking-oil poisoning occupy Madrid museum". Washington Post.