Reactionless drive

From Wikipedia, the free encyclopedia
  (Redirected from Reactionless propulsion)
Jump to: navigation, search

A reactionless drive is a device producing motion without the exhaust of a propellant. A propellantless drive is not necessarily reactionless when it constitutes an open system interacting with external fields; but a reactionless drive is a particular case of a propellantless drive as it is a closed system presumably in contradiction with the law of conservation of momentum and often considered similar to a perpetual motion machine.[1] The name comes from Newton's third law, which is usually expressed as, "for every action, there is an equal and opposite reaction." A large number of infeasible devices, such as the Dean drive, are a staple of science fiction particularly for space propulsion. To date, no reactionless device has ever been validated under properly controlled conditions.

Closed systems[edit]

Through the years there have been numerous claims for functional reactionless drive designs using ordinary mechanics (i.e. devices not said to be based on quantum mechanics, relativity or atomic forces or effects). Two of these represent their general classes: The "Dean drive" is perhaps the best known example of a "linear oscillating mechanism" reactionless drive; The "GIT" is perhaps the best known example of a "rotating mechanism" reactionless drive. These two also stand out as they both received much publicity from their promoters and the popular press in their day and both were eventually rejected when proven to not produce any reactionless drive forces. The rise and fall of these devices now serves as a cautionary tale for those making and reviewing similar claims.[2]

Dean drive[edit]

The Dean drive was a mechanical device concept promoted by inventor Norman L. Dean. Dean claimed that his device was a "reactionless thruster" and that his working models could demonstrate this effect. He held several private demonstrations but never revealed the exact design of the models nor allowed independent analysis of them.[3][4] Dean's claims of reactionless thrust generation were subsequently shown to be in error and the "thrust" producing the directional motion was likely to be caused by friction between the device and the surface on which the device was resting and would not work in free space.[2][5]

Gyroscopic Inertial Thruster (GIT)[edit]

The Gyroscopic Inertial Thruster is a proposed reactionless drive based on the mechanical principles of a rotating mechanism. The concept involves various methods of leverage applied against the supports of a large gyroscope. The supposed operating principle of a GIT is a mass traveling around a circular trajectory at a variable speed. The high-speed part of the trajectory allegedly generates greater centrifugal force than the low, so that there is a greater thrust in one direction than the other.[6] Scottish inventor Sandy Kidd, a former RAF radar technician, investigated the possibility (without success) in the 1980s.[7] He posited that a gyroscope set at various angles could provide a lifting force, defying gravity.[8] In the 1990s, several people sent suggestions to the Space Exploration Outreach Program (SEOP) at NASA recommending that NASA study a gyroscopic inertial drive, especially the developments attributed to the American inventor Robert Cook and the Canadian inventor Roy Thornson.[6] In the 1990s and 2000s, enthusiasts attempted the building and testing of GIT machines.[9] Eric Laithwaite, the "Father of Maglev", received a US patent for his "Propulsion System", which was claimed to create a linear thrust through gyroscopic and inertial forces.[10] After years of theoretical analysis and laboratory testing of actual devices, no rotating (or any other) mechanical device has ever been found to produce unidirectional reactionless thrust in free space.[2]

Open systems[edit]

Movement with thrust[edit]

Several kinds of thrust generating methods are in use or have been proposed that are propellantless, as they do not work like rockets and reaction mass is not carried nor expelled from the device. However they are not reactionless, as they constitute open systems interacting with electromagnetic waves or various kinds of fields.

Most famous propellantless methods are the gravity assist maneuver or gravitational slingshot of a spacecraft accelerating at the expense of the momentum of the planet it orbits, through the gravitational field, or beam-powered propulsion using the radiation pressure of electromagnetic waves from a distant source like a laser.

More speculative methods have also been proposed, like the Woodward effect, the quantum vacuum plasma thruster or various hypotheses trying to explain the thrust apparently produced by the EmDrive.

Movement without thrust[edit]

2D visualisation of spacetime distortion induced by the Alcubierre metric.

Because there is no well-defined "center of mass" in curved spacetime, general relativity allows a stationary object to, in a sense, "change its position" in a counter-intuitive manner, without violating conservation of momentum.

  • The Alcubierre drive is a hypothetical method of apparent faster-than-light propulsion for interstellar travel postulated from the theory of general relativity. Although this concept may be allowed by the currently accepted laws of physics, it remains unproven; implementation would require a negative energy density, and possibly a better understanding of quantum gravity. It is not clear how (or if) this effect could provide a useful means of accelerating an actual space vehicle and no practical designs have been proposed, but experiments are underway at NASA's Eagleworks Laboratories to attempt the first detection of an induced spacetime curvature, which could be the first step toward proving the validity of the concept.[11][12]
  • A hypothetical "impulse engine" or "distortion engine" creating a gravitational potential in spacetime, with no negative energy source contrary to the Alcubierre drive, would also produce a reactionless motion, being a low velocity (non relativistic) warp drive.[13]
  • Some bimetric theories of gravity with variable speed of light like the Janus cosmological model hypothesize apparent faster-than-light interstellar travel with no acceleration nor deceleration, using the energy difference of the two conjugated metrics to reach relativistic speeds after a mass inversion process.[14]
  • “Swimming in spacetime” is a geometrical motive principle that exploits the curved spacetime metric of the gravitational field to permit an extended body undergoing specific deformations in shape, to change position. In weak gravitational fields, like that of Earth, the change in position per deformation cycle would be far too small to detect, but the concept remains of interest as the only unambiguous example of reactionless motion in mainstream physics.[15][16]

See also[edit]

References[edit]

  1. ^ Winchell D. Chung Jr. "Reactionless drives". 
  2. ^ a b c Mills, Marc G.; Thomas, Nicholas E. (July 2006). Responding to Mechanical Antigravity (PDF). 42nd Joint Propulsion Conference and Exhibit. NASA. Archived from the original (PDF) on 2011-10-30. 
  3. ^ "Engine With Built-in Wings". Popular Mechanics. Sep 1961. 
  4. ^ "Detesters, Phasers and Dean Drives". Analog. June 1976. 
  5. ^ Goswami, Amit (2000). The Physicists' View of Nature. Springer. p. 60. ISBN 0-306-46450-0. 
  6. ^ a b LaViolette, Paul A. (2008). Secrets of Antigravity Propulsion: Tesla, UFOs, and Classified Aerospace Technology. Inner Traditions / Bear & Co. p. 384. ISBN 1-59143-078-X. 
  7. ^ New Scientist. 148: 96. 1995.  Missing or empty |title= (help)
  8. ^ Childress, David Hatcher (1990). Anti-Gravity & the Unified Field. Lost Science. Adventures Unlimited Press. p. 178. ISBN 0-932813-10-0. 
  9. ^ "The Adventures of the Gyroscopic Inertial Flight Team". 1998-08-13. 
  10. ^ U.S. Patent 5,860,317
  11. ^ Kakaes, Konstantin. "Warp Factor: A NASA scientist claims to be on the verge of faster-than-light travel: is he for real?, Popular Science, April 2013". PopSci.com. Retrieved 2014-11-22. 
  12. ^ http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110015936.pdf
  13. ^ Lobo, F.S.N.; Visser, M. (25 November 2004). "Fundamental limitations on 'warp drive' spacetimes". Classical and Quantum Gravity. 21 (24): 5871. arXiv:gr-qc/0406083Freely accessible. doi:10.1088/0264-9381/21/24/011. We will take the bubble velocity to be non-relativistic, vc. Thus we are not focussing attention on the "superluminal" aspects of the warp bubble, […] but rather on a secondary unremarked effect: The warp drive (if it can be realised in nature) appears to be an example of a "reaction-less drive" wherein the warp bubble moves by interacting with the geometry of spacetime instead of expending reaction mass. 
  14. ^ Petit, J.P.; d'Agostini, G. (10 November 2014). "Cosmological bimetric model with interacting positive and negative masses and two different speeds of light, in agreement with the observed acceleration of the Universe". Modern Physics Letters A. 29 (34). doi:10.1142/S021773231450182X. 
  15. ^ http://www.nature.com/scientificamerican/journal/v301/n2/full/scientificamerican0809-38.html
  16. ^ "Swimming Through Empty Space". Science 2.0. 

External links[edit]