Refinement type

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In type theory, a refinement type[1][2][3] is a type endowed with a predicate which is assumed to hold for any element of the refined type. Refinement types can express preconditions when used as function arguments or postconditions when used as return types: for instance, the type of a function which accepts natural numbers and returns natural numbers greater than 5 may be written as . Refinement types are thus related to behavioral subtyping.


  1. ^ Freeman, T.; Pfenning, F. (1991). "Refinement types for ML" (PDF). Proceedings of the ACM Conference on Programming Language Design and Implementation. pp. 268–277. doi:10.1145/113445.113468.
  2. ^ Hayashi, S. (1993). "Logic of refinement types". Proceedings of the Workshop on Types for Proofs and Programs. pp. 157–172. CiteSeerX doi:10.1007/3-540-58085-9_74.
  3. ^ Denney, E. (1998). "Refinement types for specification". Proceedings of the IFIP International Conference on Programming Concepts and Methods. 125. Chapman & Hall. pp. 148–166. CiteSeerX