Regular category

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In category theory, a regular category is a category with finite limits and coequalizers of a pair of morphisms called kernel pairs, satisfying certain exactness conditions. In that way, regular categories recapture many properties of abelian categories, like the existence of images, without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of first-order logic, known as regular logic.


A category C is called regular if it satisfies the following three properties:[1]

Regular category 1.png

is a pullback, then the coequalizer of p0,p1 exists. The pair (p0,p1) is called the kernel pair of f. Being a pullback, the kernel pair is unique up to a unique isomorphism.
  • If f:X→Y is a morphism in C, and

Regular category 2.png

is a pullback, and if f is a regular epimorphism, then g is a regular epimorphism as well. A regular epimorphism is an epimorphism which appears as a coequalizer of some pair of morphisms.


Examples of regular categories include:

The following categories are not regular:

Epi-mono factorization[edit]

In a regular category, the regular-epimorphisms and the monomorphisms form a factorization system. Every morphism f:X→Y can be factorized into a regular epimorphism e:X→E followed by a monomorphism m:E→Y, so that f=me. The factorization is unique in the sense that if e':X→E' is another regular epimorphism and m':E'→Y is another monomorphism such that f=m'e', then there exists an isomorphism h:E→E' such that he=e' and m'h=m. The monomorphism m is called the image of f.

Exact sequences and regular functors[edit]

In a regular category, a diagram of the form is said to be an exact sequence if it is both a coequalizer and a kernel pair. The terminology is a generalization of exact sequences in homological algebra: in an abelian category, a diagram

is exact in this sense if and only if is a short exact sequence in the usual sense.

A functor between regular categories is called regular, if it preserves finite limits and coequalizers of kernel pairs. A functor is regular if and only if it preserves finite limits and exact sequences. For this reason, regular functors are sometimes called exact functors. Functors that preserve finite limits are often said to be left exact.

Regular logic and regular categories[edit]

Regular logic is the fragment of first-order logic that can express statements of the form


where and are regular formulae i.e. formulae built up from atomic formulae, the truth constant, binary meets and existential quantification. Such formulae can be interpreted in a regular category, and the interpretation is a model of a sequent


if the interpretation of factors through the interpretation of . This gives for each theory (set of sequences) and for each regular category C a category Mod(T,C) of models of T in C. This construction gives a functor Mod(T,-):RegCatCat from the category RegCat of small regular categories and regular functors to small categories. It is an important result that for each theory T and for each category C, there is a category R(T) and an equivalence


which is natural in C. Up to equivalence any small regular category C arises this way as the classifying category, of a regular theory.

Exact (effective) categories[edit]

The theory of equivalence relations is a regular theory. An equivalence relation on an object of a regular category is a monomorphism into that satisfies the interpretations of the conditions for reflexivity, symmetry and transitivity.

Every kernel pair defines an equivalence relation . Conversely, an equivalence relation is said to be effective if it arises as a kernel pair.[2] An equivalence relation is effective if and only if it has a coequalizer and it is the kernel pair of this.

A regular category is said to be exact, or exact in the sense of Barr, or effective regular, if every equivalence relation is effective.[3]

Examples of exact categories[edit]

See also[edit]


  1. ^ Pedicchio & Tholen (2004) p.177
  2. ^ Pedicchio & Tholen (2004) p.169
  3. ^ Pedicchio & Tholen (2004) p.179