Relative homology

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace.


Given a subspace , one may form the short exact sequence

where denotes the singular chains on the space X. The boundary map on leaves invariant[1] and therefore descends to a boundary map on the quotient. If we denote this quotient by , we then have a complex

Then the nth relative homology group is

One says that relative homology is given by the relative cycles, chains whose boundaries are chains on A, modulo the relative boundaries (chains that are homologous to a chain on A, i.e. chains that would be boundaries, modulo A again).[2]


The above short exact sequences specifying the relative chain groups gives rise to a chain complex of short exact sequences. An application of the snake lemma then yields a long exact sequence

The connecting map takes a relative cycle, representing a homology class in Hn(X, A), to its boundary (which is a cycle in A).[3]

It follows that Hn(X, x0), where x0 is a point in X, is the n-th reduced homology group of X. In other words, Hi(X, x0) = Hi(X) for all i > 0. When i = 0, H0(X, x0) is the free module of one rank less than H0(X). The connected component containing x0 becomes trivial in relative homology.

The excision theorem says that removing a sufficiently nice subset ZA leaves the relative homology groups Hn(X, A) unchanged. Using the long exact sequence of pairs and the excision theorem, one can show that Hn(X, A) is the same as the n-th reduced homology groups of the quotient space X/A.

The n-th local homology group of a space X at a point x0 is defined to be Hn(X, X - {x0}). Informally, this is the "local" homology of X close to x0.

Relative homology readily extends to the triple (X, Y, Z) for ZYX.

One can define the Euler characteristic for a pair YX by

The exactness of the sequence implies that the Euler characteristic is additive, i.e. if ZYX, one has


Just as in absolute homology, continuous maps between spaces induce homomorphisms between relative homology groups. In fact, this map is exactly the induced map on homology groups, but it descends to the quotient.

Let and be pairs of spaces such that and , and let be a continuous map. Then there is an induced map on the (absolute) chain groups. If , then . Let

be the natural projections which take elements to their equivalence classes in the quotient groups. Then the map is a group homomorphism. Since , this map descends to the quotient, inducing a well-defined map such that the following diagram commutes:

The functoriality of relative homology.svg.[4]

Chain maps induce homomorphisms between homology groups, so induces a map on the relative homology groups.[3]


One important use of relative homology is the computation of the homology groups of quotient spaces . In the case that is a subspace of fulfilling the mild regularity condition that there exists a neighborhood of that has as a deformation retract, then the group is isomorphic to . We can immediately use this fact to compute the homology of a sphere. We can realize as the quotient of an n-disk by its boundary, i.e. . Applying the exact sequence of relative homology gives the following:

Because the disk is contractible, we know its reduced homology groups vanish in all dimensions, so the above sequence collapses to the short exact sequence:

Therefore, we get isomorphisms . We can now proceed by induction to show that . Now because is the deformation retract of a suitable neighborhood of itself in , we get that

Another insightful geometric example is given by the relative homology of where . Then we can use the long exact sequence

Using exactness of the sequence we can see that contains a loop counterclockwise around the origin. Since the cokernel of fits into the exact sequence

it must be isomorphic to . One generator for the cokernel is the -chain since its boundary map is

See also[edit]


  • "Relative homology groups". PlanetMath.
  • Joseph J. Rotman, An Introduction to Algebraic Topology, Springer-Verlag, ISBN 0-387-96678-1
  1. ^ i.e., the boundary maps to
  2. ^ Allen., Hatcher (2002). Algebraic topology. Cambridge: Cambridge University Press. ISBN 9780521795401. OCLC 45420394.
  3. ^ a b Allen., Hatcher (2002). Algebraic topology. Cambridge: Cambridge University Press. pp. 118–119. ISBN 9780521795401. OCLC 45420394.
  4. ^ S., Dummit, David (2004). Abstract algebra. Foote, Richard M., 1950- (3. ed.). Hoboken, NJ: Wiley. ISBN 9780471452348. OCLC 248917264.