Resolvability criterion

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Resolvability criterion can refer to any voting system criterion that ensures a low possibility of tie votes.

  • In Nicolaus Tideman's version of the criterion, for every (possibly tied) winner in a result, there must exist a way for one added vote to make that winner unique.
  • Douglas R. Woodall's version requires that the proportion of profiles giving a tie approaches zero as the number of voters increases toward infinity.

Methods that satisfy both versions include approval voting, range voting, Borda count, instant-runoff voting, minimax Condorcet, plurality, Tideman's ranked pairs,[1] and Schulze.[2]

Methods that violate both versions include Copeland's method and the Slater rule.[citation needed]

References[edit]

  1. ^ [1]
  2. ^ [2]