Restricted product

From Wikipedia, the free encyclopedia
Jump to: navigation, search

In mathematics, the restricted product is a construction in the theory of topological groups.

Let be an indexing set; a finite subset of . If for each , is a locally compact group, and for each , is an open compact subgroup, then the restricted product

is the subset of the product of the 's consisting of all elements such that for all but finitely many .

This group is given the topology whose basis of open sets are those of the form

where is open in and for all but finitely many .

One can easily prove that the restricted product is itself a locally compact group. The best known example of this construction is that of the adele ring and idele group of a global field.

See also[edit]

References[edit]