Rhombitriapeirogonal tiling

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Rhombitriapeirogonal tiling
Rhombitriapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.4.∞.4
Schläfli symbol rr{∞,3} or
Wythoff symbol 3 | ∞ 2
Coxeter diagram CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node 1.png or CDel node.pngCDel split1-i3.pngCDel nodes 11.png
CDel node 1.pngCDel infin.pngCDel node h.pngCDel 3.pngCDel node h.png
Symmetry group [∞,3], (*∞32)
[∞,3+], (3*∞)
Dual Deltoidal triapeirogonal tiling
Properties Vertex-transitive

In geometry, the rhombtriapeirogonal tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of rr{∞,3}.


This tiling has [∞,3], (*∞32) symmetry. There is only one uniform coloring.

Similar to the Euclidean rhombitrihexagonal tiling, by edge-coloring there is a half symmetry form (3*∞) orbifold notation. The apeireogons can be considered as truncated, t{∞} with two types of edges. It has Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel infin.pngCDel node 1.png, Schläfli symbol s2{3,∞}. The squares can be distorted into isosceles trapezoids. In the limit, where the rectangles degenerate into edges, an infinite-order triangular tiling results, constructed as an snub triapeirotrigonal tiling, CDel node h.pngCDel 3.pngCDel node h.pngCDel infin.pngCDel node.png.

Related polyhedra and tiling[edit]

Symmetry mutations[edit]

This hyperbolic tiling is topologically related as a part of sequence of uniform cantellated polyhedra with vertex configurations (3.4.n.4), and [n,3] Coxeter group symmetry.

See also[edit]


  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678. 

External links[edit]