Robotics simulator

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

A robotics simulator is a simulator used to create application for a physical robot without depending on the actual machine, thus saving cost and time. In some case, these applications can be transferred onto the physical robot (or rebuilt) without modifications.

The term robotics simulator can refer to several different robotics simulation applications. For example, in mobile robotics applications, behavior-based robotics simulators allow users to create simple worlds of rigid objects and light sources and to program robots to interact with these worlds. Behavior-based simulation allows for actions that are more biological in nature when compared to simulators that are more binary, or computational. In addition, behavior-based simulators may "learn" from mistakes and are capable of demonstrating the anthropomorphic quality of tenacity.

Robologix robotics simulator.

One of the most popular applications for robotics simulators is for 3D modeling and rendering of a robot and its environment. This type of robotics software has a simulator that is a virtual robot, which is capable of emulating the motion of an actual robot in a real work envelope. Some robotics simulators use a physics engine for more realistic motion generation of the robot. The use of a robotics simulator for development of a robotics control program is highly recommended regardless of whether an actual robot is available or not. The simulator allows for robotics programs to be conveniently written and debugged off-line with the final version of the program tested on an actual robot. This primarily holds for industrial robotic applications only, since the success of off-line programming depends on how similar the real environment of the robot is to the simulated environment.

Sensor-based robot actions are much more difficult to simulate and/or to program off-line, since the robot motion depends on the instantaneous sensor readings in the real world.

Features[edit]

Modern simulators tend to provide the following features:

  • Fast robot prototyping
    • Using the own simulator as creation tool.
    • Using external tools.
  • Physics engines for realistic movements. Most simulators use Bullet, ODE or PhysX.
  • Realistic 3d rendering. Standard 3d modeling tools or third-party tools can be used to build the environments.
  • Dynamic robot bodies with scripting. C, C++, Perl, Python, Java, URBI, MATLAB languages used by Webots, Python used by Gazebo.

Simulators[edit]

Among the newest technologies available today for programming are those which use a virtual simulation. Simulations with the use of virtual models of the working environment and the robots themselves can offer advantages to both the company and programmer. By using a simulation, costs are reduced, and robots can be programmed off-line which eliminates any down-time for an assembly line. Robot actions and assembly parts can be visualised in a 3-dimensional virtual environment months before prototypes are even produced. Writing code for a simulation is also easier than writing code for a physical robot. While the move toward virtual simulations for programming robots is a step forward in user interface design, many such applications are only in their infancy.

General information[edit]

Software Developers Development status License 3D rendering engine Physics engine 3D modeller Platforms supported
Gazebo Open Source Robotics Foundation(OSRF) Active Apache 2.0 OGRE ODE/Bullet/Simbody/DART Internal Linux, macOS, Windows
RoboDK RoboDK Active Proprietary OpenGL Gravity plugin Internal Linux, macOS, Windows, Android, iOS, Debian
SimSpark O. Obst et al. (+26) Active GNU GPL (v2) Internal ODE None Linux, macOS, Windows
Webots Cyberbotics Ltd. Active Apache 2.0 Internal (WREN) Fork of ODE Internal Linux, macOS, Windows
OpenRAVE OpenRAVE Community Active GNU LGPL Coin3D/OpenSceneGraph ODE/Bullet Internal Linux, macOS, Windows
CoppeliaSim Coppelia Robotics Active Dual: Commercial / GNU GPL Internal Bullet/ODE/Vortex/Newton Game Dynamics Internal Linux, macOS, Windows
Software Developers Development status License 3D rendering engine Physics engine 3D modeller Platforms supported

Technical information[edit]

Software Main programming language Formats support Extensibility External APIs Robotics middleware support Primary user interface Headless simulation
Gazebo C++ SDF[1]/URDF,[2] OBJ, STL, Collada Plugins (C++) C++ ROS, Player, Sockets (protobuf messages) GUI Yes
RoboDK Python SLDPRT, SLDASM, STEP, OBJ, STL, 3DS, Collada, VRML, URDF, Rhinoceros_3D, ... API,[3] Plug-In Interface[4] Python, C/C++, C#, Matlab, ... Socket GUI Un­known
SimSpark C++, Ruby Ruby Scene Graphs Mods (C++) Network (sexpr) Sockets (sexpr) GUI, Sockets Un­known
Webots C++ WBT, VRML, X3D, 3DS, Blender, BVH, Collada, FBX, STL, OBJ, URDF API, PROTOs, Plugins (C/C++) C, C++, Python, Java, Matlab, ROS Sockets, ROS, NaoQI GUI Yes[5]
OpenRAVE C++, Python XML, VRML, OBJ, Collada Plugins (C++), API C/C++, Python, Matlab Sockets, ROS, YARP GUI, Sockets Yes
CoppeliaSim C++, Lua 3DS, Blender, Collada, STL, OBJ, URDF, SDF, GLTF, XML Plugins (C/C++), Embedded scripts (Lua), Remote API (C, C++, Python, Java, MATLAB, Octave), Add-ons (Lua) C, C++, Python, Java, MATLAB, Octave, ROS, ROS 2.0 Sockets, ROS, ROS 2.0, ZeroMQ GUI Yes
Software Main programming language Formats support Extensibility External APIs Robotic middleware support Primary user interface Headless simulation

Infrastructure[edit]

Support[edit]

Software Mailing List API Documentation Public Forum/Help System User Manual Issue Tracker Wiki Chat
Gazebo Yes[6] Yes[7] Yes[8] Yes[9] Yes[10] No
RoboDK Yes[11] Yes[12] Yes[13] Yes[14] Yes[15] No Un­known
SimSpark Yes[16] Yes[17] No Yes[18] Yes[19] Yes[20] Un­known
Webots No Yes[21] No Yes[22] Yes[23] Yes[24] Yes[25]
OpenRAVE Yes[26] Yes[27] Yes[28] Yes[29] Yes[28] Yes[30] Un­known
CoppeliaSim No Yes[31] Yes[32] Yes[33] Yes[34] Un­known No
Software Mailing List API Documentation Public Forum/Help System User Manual Issue Tracker Wiki

Code Quality[edit]

Software Static Code Checker Style Checker Test System(s) Test Function coverage Test Branch coverage Lines of Code Lines of Comments Continuous Integration
Gazebo cppcheck[35] cpplint[35] gtest and qtest[35] 77.0%[35] 53.3%[35] 320k[35] 106k[35] Jenkins[35]
RoboDK Un­known Un­known Un­known Un­known Un­known Un­known Un­known Un­known
SimSpark Un­known Un­known Un­known Un­known Un­known Un­known Un­known Un­known
Webots cppcheck[36] clang-format[37] unit tests[38] 100% of API functions[39] master,[40] develop[41] ~200k ~50k Travis,[42] AppVeyor,[43] GitGuardian,[44] GitHub Actions
OpenRAVE Un­known Un­known Python nose Un­known Un­known Un­known Un­known Jenkins[45]
CoppeliaSim Un­known Un­known Un­known Un­known Un­known Un­known Un­known Un­known
Software Static Code Checker Style Checker Test System(s) Test Function coverage Test Branch coverage Lines of Code Lines of Comments Continuous Integration

Features[edit]

Software CAD to Motion Dynamic Collision Avoidance Relative End Effectors Off-Line Programming Real-Time Streaming Control of Hardware
Gazebo Un­known Yes Yes Yes Yes
RoboDK Yes Yes Yes Yes Yes
SimSpark Un­known No Un­known No No
Webots Un­known Yes Yes Yes Yes
OpenRAVE Un­known No Un­known No No
CoppeliaSim Un­known Yes Yes Yes Yes
Software CAD to Motion Dynamic Collision Avoidance Relative End Effectors Off-line Programming Real-time Streaming Control

Families of robots[edit]

Software UGV (ground mobile robot) UAV (aerial robots) AUV (underwater robots) Robotic arms Robotic hands (grasping simulation) Humanoid robots Human avatars Full list
Gazebo Yes[46] Yes[47] Yes[48] Yes[49] Yes[50] Yes[51] Yes[52]
RoboDK No No No Yes[53] No No No Yes[53]
SimSpark Yes No No Maybe Maybe Yes No
Webots Yes Yes Yes[54] Yes Yes Yes[55] Yes Yes[56]
OpenRAVE Yes Un­known Un­known Yes Yes Yes Yes
CoppeliaSim Yes Yes Yes Yes Yes Yes Yes Yes[57]
Software UGV (ground mobile robot) UAV (aerial robots) AUV (underwater robots) Robotic arms Robotic hands (grasping simulation) Humanoid robots Human avatars Full list

Supported actuators[edit]

Software Generic kinematic chains Force-controlled motion Full list Circular kinematic chains Kinematically redundant chains Bifurcated kinematic chains
Gazebo Yes Yes Yes Yes Yes
RoboDK Un­known Un­known Un­known Un­known Un­known
SimSpark Yes No SimSpark effectors Un­known Un­known Un­known
Webots Yes Yes Webots actuators Yes Yes Yes
OpenRAVE Yes Yes Joints,Extra Actuators Yes[58] Yes Yes[59]
CoppeliaSim Yes Yes Yes Yes Yes
Software Generic kinematic chains Force-controlled motion Full list Circular kinematic chains Kinematically redundant chains Bifurcated kinematic chains

Supported sensors[edit]

Software Odometry IMU Collision GPS Monocular cameras Stereo cameras Depth cameras Omnidirectional cameras 2D laser scanners 3D laser scanners Full list
Gazebo Yes Yes Yes[60] Yes Yes[61] Yes Yes Yes Yes[62] Yes[62]
RoboDK Un­known Un­known Un­known Un­known Un­known Yes Yes Yes Yes Yes
SimSpark Yes Yes Yes[63] Partial[64] Yes Partial Un­known Un­known No No SimSpark perceptors
Webots Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Webots sensors
OpenRAVE Yes Yes Yes Yes Yes Yes Yes Un­known Yes Yes
CoppeliaSim Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Software Odometry IMU Collision GPS Monocular cameras Stereo cameras Depth cameras Omnidirectional cameras 2D laser scanners 3D laser scanners Full list

References[edit]

  1. ^ OSRF. "SDF". sdformat.org. Retrieved 2019-04-27.
  2. ^ "urdf - ROS Wiki". wiki.ros.org. Retrieved 2017-10-06.
  3. ^ "RoboDK API". 22 October 2021.
  4. ^ "RoboDK Plug-In Interface". 16 October 2021.
  5. ^ However, requires a connection on an X server for 3D rendering
  6. ^ "Gazebo Community". Retrieved 2019-04-27.
  7. ^ "Gazebo API". Gazebo Community. Retrieved 2019-04-27.
  8. ^ "Gazebo Answers". Gazebo Community. Retrieved 2019-04-27.
  9. ^ "Gazebo Tutorials". Gazebo Community. Retrieved 2019-04-27.
  10. ^ "Gazebo Issue Tracker". Gazebo Community. Retrieved 2019-04-27.
  11. ^ RoboDK mailing list
  12. ^ RoboDK API Documentation
  13. ^ RoboDK Forum
  14. ^ RoboDK Documentation
  15. ^ RoboDK Bug tracker
  16. ^ SimSpark mailing lists
  17. ^ SimSpark client protocols
  18. ^ SimSpark user manual (Wiki)
  19. ^ SimSpark Tracker
  20. ^ SimSpark Wiki
  21. ^ Webots Reference Manual
  22. ^ Webots User Guide
  23. ^ Webots issues on GitHub
  24. ^ Webots technical wiki on GitHub
  25. ^ Webots Discord channel
  26. ^ OpenRAVE mailing list
  27. ^ OpenRAVE API
  28. ^ a b OpenRAVE Issue Tracker
  29. ^ OpenRAVE User Guide
  30. ^ OpenRAVE Wiki
  31. ^ CoppeliaSim API
  32. ^ Coppelia Robotics Forum
  33. ^ CoppeliaSim User Manual
  34. ^ Coppelia Robotics bug reports
  35. ^ a b c d e f g h OSRF. "Gazebo". gazebosim.org. Retrieved 2019-04-27.
  36. ^ CppCheck
  37. ^ Clang Format
  38. ^ Unit tests
  39. ^ API tests
  40. ^ Webots master
  41. ^ Webots develop
  42. ^ Source
  43. ^ Source
  44. ^ Source
  45. ^ Source
  46. ^ OSRF. "Gazebo : Tutorial : Beginner: Model Editor". gazebosim.org. Retrieved 2019-04-27.
  47. ^ OSRF. "Gazebo : Tutorial : Aerodynamics". gazebosim.org. Retrieved 2019-04-27.
  48. ^ OSRF. "Gazebo : Tutorial : Hydrodynamics". gazebosim.org. Retrieved 2019-04-27.
  49. ^ OSRF. "Gazebo : ARIAC". gazebosim.org. Retrieved 2019-04-27.
  50. ^ OSRF. "Gazebo : HAPTIX". gazebosim.org. Retrieved 2019-04-27.
  51. ^ "DARPA's legacy: Open source simulation for robotics development and testing | Robohub". robohub.org. Retrieved 2019-04-27.
  52. ^ OSRF. "Gazebo : Tutorial : Make an animated model (actor)". gazebosim.org. Retrieved 2019-04-27.
  53. ^ a b RoboDK robot library
  54. ^ including Salamander robot
  55. ^ including Nao, DARwIn-OP, Fujitsu HOAP2, Kondo KHR-2HV, KHR-3, etc.
  56. ^ Webots robot models
  57. ^ CoppeliaSim main features
  58. ^ OpenRAVE Closed chains
  59. ^ OpenRAVE Dual-arm example
  60. ^ OSRF. "Gazebo : Tutorial : Contact Sensor". gazebosim.org. Retrieved 2019-04-27.
  61. ^ OSRF. "Gazebo : Tutorial : Camera Distortion". gazebosim.org. Retrieved 2019-04-27.
  62. ^ a b OSRF. "Gazebo : Tutorial : Intermediate: Velodyne". gazebosim.org. Retrieved 2019-04-27.
  63. ^ Collision detection uses a simplified model
  64. ^ Possible, no model for noise

External links[edit]