Romanesco broccoli

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
Romanesco broccoli (Brassica oleracea).jpg
Romanesco, showing its self-similar form
SpeciesBrassica oleracea
Cultivar groupBotrytis cultivar group

Romanesco broccoli (also known as Roman cauliflower, Broccolo Romanesco, Romanesque cauliflower, or simply Romanesco, and sometimes Broccoflower) is an edible flower bud of the species Brassica oleracea. First documented in Italy in the 16th century, it is chartreuse in color, and has a form naturally approximating a fractal. When compared to a traditional cauliflower, it has a firmer texture and delicate, nutty flavor.


The Romanesco superficially resembles a cauliflower, but it has a visually striking fractal form.
Romanesco broccoli texture
Romanesco broccoli in a field

Romanesco superficially resembles a cauliflower, but it is chartreuse in color, with the form of a natural fractal. Nutritionally, romanesco is rich in vitamin C, vitamin K, dietary fiber, and carotenoids.[1]

Fractal structure[edit]

The inflorescence (the bud) is self-similar in character, with the branched meristems making up a logarithmic spiral, giving a form approximating a natural fractal; each bud is composed of a series of smaller buds, all arranged in yet another logarithmic spiral. This self-similar pattern continues at smaller levels. The pattern is only an approximate fractal since the pattern eventually terminates when the feature size becomes sufficiently small. The number of spirals on the head of Romanesco broccoli is a Fibonacci number.[2]

The causes of its differences in appearance from the normal cauliflower and broccoli have been modeled as an extension of the preinfloresence stage of bud growth.[3] A 2021 paper has ascribed this phenomenon to perturbations of floral gene networks that causes the development of meristems into flowers to fail, but instead to repeat itself in a self-similar way.[4][5]

See also[edit]


  1. ^ Tufts Nutrition. "Tufts Nutrition Top 10". Tufts Nutrition Magazine. Retrieved 26 February 2020.
  2. ^ Ron Knott (30 October 2010). "Fibonacci Numbers and Nature". Ron Knott's Web Pages on Mathematics. Archived from the original on 28 November 2018.
  3. ^ Martin Kieffer; Michael P. Fuller; Anita J. Jellings (July 1998). "Explaining Curd and Spear Geometry in Broccoli, Cauliflower and 'Romanesco': Quantitative Variation in Activity of Primary Meristems". Planta. 206 (1): 34–43. doi:10.1007/s004250050371. S2CID 39949892.
  4. ^ Azpeitia, Eugenio; Tichtinsky, Gabrielle; Masson, Marie Le; Serrano-Mislata, Antonio; Lucas, Jérémy; Gregis, Veronica; Gimenez, Carlos; Prunet, Nathanaël; Farcot, Etienne; Kater, Martin M.; Bradley, Desmond (2021-07-09). "Cauliflower fractal forms arise from perturbations of floral gene networks". Science. 373 (6551): 192–197. doi:10.1126/science.abg5999. ISSN 0036-8075. PMID 34244409.
  5. ^ Farcot, Etienne. "Why do cauliflowers look so odd? We've cracked the maths behind their 'fractal' shape". The Conversation. Retrieved 2021-07-20.

External links[edit]

  • Malatesta, M.; Davey, J.C. (1996). "Cultivar Identification Within Broccoli, Brassica Oleracea L. Var. Italica Plenck And Cauliflower, Brassica Oleracea Var. Botrytis L.". Acta Hortic. 407 (407): 109–114. doi:10.17660/ActaHortic.1996.407.12.