S-Nitrosylation

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

S-Nitrosylation is the covalent attachment of a nitroso group (-NO) to cysteine thiol within a protein to form an S-nitrosothiol (SNO). S-nitrosylation has diverse regulatory roles in bacteria, yeast and plants and in virtually all mammalian cell types.[1] It operates as a fundamental mechanism for cellular signaling across phylogeny and accounts for the large part of NO bioactivity.

S-nitrosylation is precisely targeted,[2] reversible,[3] spatiotemporally restricted[4][5] and necessary for a wide range of cellular responses,[6] including the prototypic example of red blood cell mediated autoregulation of blood flow that is essential for vertebrate life.[7] Although originally thought to involve multiple chemical routes in vivo, accumulating evidence suggests that S-nitrosylation depends on enzymatic activity, entailing three classes of enzymes (S-nitrosylases) that operate in concert to conjugate NO to proteins, drawing analogy to ubiquitinylation.[8] S-Nitrosylation was first described by Stamler et al. and proposed as a general mechanism for control of protein function, including examples of both active and allosteric regulation of proteins by endogenous and exogenous sources of NO.[9][10][11][12] The redox-based chemical mechanisms for S-nitrosylation in biological systems were also described concomitantly.[13] Important examples of proteins whose activities were subsequently shown to be regulated by S-nitrosylation include the NMDA-type glutamate receptor in the brain.[14][15] Aberrant S-nitrosylation following stimulation of the NMDA receptor would come to serve as a prototypic example of the involvement of S-nitrosylation in disease.[16] S-nitrosylation also contributes to normal function and dysfunction of cardiac myocytes.[17] S-Nitrosylation is thus established as ubiquitous in biology, having been demonstrated to occur in all phylogenetic kingdoms[18][19] and has been described as the prototypic redox-based signalling mechanism,[20] hypothesized to have evolved on primordial Earth.[21]

The reverse of S-nitrosylation is denitrosylation, principally an enzymically controlled process. Multiple enzymes have been described to date, which fall into two main classes mediating denitrosylation of protein and low molecular weight SNOs, respectively. S-Nitrosoglutathione reductase (GSNOR) is exemplary of the low molecular weight class; it accelerates the decomposition of S-nitrosoglutathione (GSNO) and SNO-proteins in equilibrium with GSNO. The enzyme is highly conserved from bacteria to humans.[22] Thioredoxin (Trx)-related proteins, including Trx1 and 2 in mammals, catalyze the transnitrosylation[23] and direct denitrosylation of S-nitrosoproteins.[24][25][26] Aberrant S-nitrosylation (and denitrosylation) has been implicated in multiple diseases including heart disease,[27] cancer and asthma[28][29][30] as well as neurological disorders, including stroke,[31] chronic degenerative diseases (e.g., Parkinson's and Alzheimer's disease)[32][33][34][35] and Amyotrophic Lateral Sclerosis (ALS).[36]

References[edit]

  1. ^ Anand P, Stamler JS. J. Mol. Med. (Berl). 90(3): 233-244 (2012)
  2. ^ Sun JH, Xin CL, Eu JP, Stamler JS, Meissner G. Proc. Natl. Acad. Sci. U S A 98:11158-11162 (2003)
  3. ^ Padgett CM, Whorton AR. Am. J. Physiol. 269:739-749 (1995)
  4. ^ Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH. Neuron 28:183-193 (2000)
  5. ^ Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, Sessa WC. Proc. Natl. Acad. Sci. U S A 103:19777-19782 (2006)
  6. ^ Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS. Nat. Rev. Mol. Cell. Biol. 6:150-166 (2005)
  7. ^ Zhang R, Hess DT, Qian Z, Hausladen A, Fonseca F, Chaube R, Reynolds JR, Stamler JS. Proc. Natl. Acad. Sci. U S A 112:6425-6430 (2015)
  8. ^ Seth D, Hess DT, Hausladen A, Wagn L, Wang Y, Stamler JS. Mol Cell; 69: 451-464 (2018)
  9. ^ Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J. Proc Natl Acad Sci USA; 89: 444-448 (1992)
  10. ^ Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Neuron 8(6):1087-1099 (1992)
  11. ^ Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, Mullins M, Singel D, Loscalzo J. Proc Natl Acad Sci USA; 89: 8087-8091 (1992)
  12. ^ Stamler JS, Simon DI, Osborne JA, Mullins M, Jaraki O, Michel T, Singel D, Loscalzo J. In: Moncada S, Marletta MA, Hibbs JB ed. Biology of Nitric Oxide. I Portland Press Proceed, pp 20-23 (1992)
  13. ^ Stamler JS, Singel DJ, Loscalzo J. Science 258: 1898-1902 (1992)
  14. ^ Lei SZ, Pan Z-H, Aggarwal SK, Chen H-SV, Hartman J, Sucher NJ, Lipton SA. Neuron 8(6):1087-1099 (1992)
  15. ^ Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Singel DJ, Loscalzo J, Stamler JS. Nature 364(6438):626-632 (1993)
  16. ^ Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, McKercher SR, Ambasudhan R, Okamoto S, Lipton SA.Neurobiol Dis ;84:99-108 (2015)
  17. ^ Beuve, A; Wu, C; Cui, C; Liu, T; Jain, MR; Huang, C; Yan, L; Kholodovych, V; Li, H (14 April 2016). "Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor". Journal of proteomics. 138: 40–7. doi:10.1016/j.jprot.2016.02.009. PMID 26917471.
  18. ^ Seth D, Hausladen A, Wang YJ, Stamler JS. Science 336(6080):470-473 (2012)
  19. ^ Malik SI, Hussain A, Yun BW, Spoel SH, Loake GJ. Plant Sci. 181(5):540-544 (2011)
  20. ^ Stamler JS, Lamas S, Fang FC. Cell 106(6):675-683 (2001)
  21. ^ Derakhshan B, Hao G, Gross SS. Cardiovasc. Res. 75(2):210-219 (2007)
  22. ^ Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS. Nature 410(6827):490-4 (2001)
  23. ^ Wu, Changgong; Liu, Tong; Wang, Yan; Yan, Lin; Cui, Chuanlong; Beuve, Annie; Li, Hong (2018). "Biotin Switch Processing and Mass Spectrometry Analysis of S-Nitrosated Thioredoxin and Its Transnitrosation Targets". Methods in Molecular Biology. Springer New York. pp. 253–266. ISBN 9781493976942.
  24. ^ Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, Ivanova J, Pitt B, Billiar TR, Kagan VE. J. Am. Chem. Soc. 127:15815-23 (2005)
  25. ^ Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA. Biochemistry. 46:8472-83 (2007)
  26. ^ Benhar M, Forrester MT, Hess DT, Stamler JS. Science 320:1050-4 (2008)
  27. ^ Beuve, A; Wu, C; Cui, C; Liu, T; Jain, MR; Huang, C; Yan, L; Kholodovych, V; Li, H (14 April 2016). "Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor". Journal of proteomics. 138: 40–7. doi:10.1016/j.jprot.2016.02.009. PMID 26917471.
  28. ^ Aranda E, López-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A. Curr. Mol. Med. 12(1):50-67 (2012)
  29. ^ Switzer CH, Glynn SA, Cheng RY, Ridnour LA, Green JE, Ambs S, Wink DA. Mol Cancer Res.Sep;10(9):1203-15.(2012)
  30. ^ 230. Foster MW, Hess DT, Stamler JS Trends Molec Med; 15: 391-404 (2009)
  31. ^ Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA. Science 297(5584):1186-90 (2002)
  32. ^ Yao D, Gu Z, Nakamura T, Shi Z-Q, Ma Y, Gaston B, Palmer LA, Rockenstein EM, Zhang Z, Masliah E, Uehara T, Lipton SA. Proc. Natl. Acad. Sci. U S A 101(29):10810-4 (2004)
  33. ^ Uehara T, Nakamura T, Yao D, Shi Z-Q, Gu Z, Masliah E, Nomura Y, Lipton SA. Nature 2441(7092):513-7 (2006)
  34. ^ Benhar M, Forrester MT, Stamler JS. ACS Chem. Biol. 1(6):355-8 (2006)
  35. ^ Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. Science 324(5923):102-5 (2009)
  36. ^ Schonhoff CM, Matsuoka M, Tummala H, Johnson MA, Estevéz AG, Wu R, Kamaid A, Ricart KC, Hashimoto Y, Gaston B, Macdonald TL, Xu Z, Mannick JB. Proc. Natl. Acad. Sci. U S A 103(7):2404-9 (2006)