SIC-POVM

From Wikipedia, the free encyclopedia
Jump to: navigation, search

A symmetric, informationally complete, positive operator valued measure (SIC-POVM) is a special case of a generalized measurement on a Hilbert space, used in the field of quantum mechanics. A measurement of the prescribed form satisfies certain defining qualities that makes it an interesting candidate for a "standard quantum measurement," utilized in the study of foundational quantum mechanics, most notably in QBism. Furthermore, it has been shown that applications exist in quantum state tomography[1] and quantum cryptography,[2] and a possible connection has been discovered with Hilbert's twelfth problem.[3]

Definition[edit]

Due to the use of SIC-POVMs primarily in quantum mechanics, Dirac notation will be used throughout this article to represent elements in a Hilbert space.

A POVM over a -dimensional Hilbert space is a set of positive semidefinite operators on the Hilbert space that sum to the identity:

If a POVM consists of at least operators which span , it is said to be an informationally complete POVM (IC-POVM). IC-POVMs consisting of exactly elements are called minimal. A set of rank-1 projectors which have equal pairwise Hilbert–Schmidt inner products,
defines a minimal IC-POVM called a SIC-POVM.

Properties[edit]

Symmetry[edit]

The condition that the projectors defined above have equal pairwise inner products actually fixes the value of this constant. Recall that and set . Then

implies that . Thus,
This property is what makes SIC-POVMs symmetric; with respect to the Hilbert–Schmidt inner product, any pair of elements is equivalent to any other pair.

Superoperator[edit]

In using the SIC-POVM elements, an interesting superoperator can be constructed, the likes of which map . This operator is most useful in considering the relation of SIC-POVMs with spherical t-designs. Consider the map

This operator acts on a SIC-POVM element in a way very similar to identity, in that

But since elements of a SIC-POVM can completely and uniquely determine any quantum state, this linear operator can be applied to the decomposition of any state, resulting in the ability to write the following:

where

From here, the left inverse can be calculated[4] to be , and so with the knowledge that

,

an expression for a state can be created in terms of a quasi-probability distribution, as follows:

where is the Dirac notation for the density operator viewed in the Hilbert space . This shows that the appropriate quasi-probability distribution (termed as such because it may yield negative results) representation of the state is given by

Finding SIC sets[edit]

Group covariance[edit]

General group covariance[edit]

A SIC-POVM is said to be group covariant if there exists a group with a -dimensional unitary representation such that

The search for SIC-POVMs can be greatly simplified by exploiting the property of group covariance. Indeed, the problem is reduced to finding a normalized fiducial vector such that

.

The SIC-POVM is then the set generated by the group action of on .

The case of Zd × Zd[edit]

So far, most SIC-POVM's have been found by considering group covariance under .[5] To construct the unitary representation, we map to , the group of unitary operators on d-dimensions. Several operators must first be introduced. Let be a basis for , then the phase operator is

where is a root of unity

and the shift operator as

Combining these two operators yields the Weyl operator which generates the Heisenberg-Weyl group. This is a unitary operator since

It can be checked that the mapping is a projective unitary representation. It also satisfies all of the properties for group covariance,[6] and is useful for numerical calculation of SIC sets.

Zauner's conjecture[edit]

Given some of the useful properties of SIC-POVMs, it would be useful if it was positively known whether such sets could be constructed in a Hilbert space of arbitrary dimension. Originally proposed in the dissertation of Zauner,[7] a conjecture about the existence of a fiducial vector for arbitrary dimensions was hypothesized.

More specifically,

For every dimension there exists a SIC-POVM whose elements are the orbit of a positive rank-one operator under the Weyl–Heisenberg group . What is more, commutes with an element T of the Jacobi group . The action of T on modulo the center has order three.

Utilizing the notion of group covariance on , this can be restated as [8]

For any dimension , let be an orthonormal basis for , and define

Then such that the set is a SIC-POVM

Partial results[edit]

Algebraic and analytical results for finding SIC sets have been shown in the limiting case where the dimension of the Hilbert space is .[7][8][9][10][11][12][13] Furthermore, using the Heisenberg group covariance on , numerical solutions have been found for all integers up through .[5][8][10][14][15][16]

The proof for the existence of SIC-POVMs for arbitrary dimensions remains an open question,[6] but is an ongoing field of research in the quantum mechanics community.

Relation to spherical t-designs[edit]

A spherical t-design is a set of vectors on the d-dimensional generalized hypersphere, such that the average value of any -order polynomial over is equal to the average of over all normalized vectors . Defining as the t-fold tensor product of the Hilbert spaces, and

as the t-fold tensor product frame operator, it can be shown that[8] a set of normalized vectors with forms a spherical t-design if and only if

It then immediately follows that every SIC-POVM is a 2-design, since

which is precisely the necessary value that satisfies the above theorem.

Relation to MUBs[edit]

In a d-dimensional Hilbert space, two distinct bases are said to be mutually unbiased if

This seems similar in nature to the symmetric property of SIC-POVMs. In fact, the problem of finding a SIC-POVM is precisely the problem of finding equiangular lines in ; whereas mutually unbiased bases are analogous to affine spaces. In fact it can be shown that the geometric analogy of finding a "complete set of mutually unbiased bases is identical to the geometric structure analogous to a SIC-POVM[17] ". It is important to note that the equivalence of these problems is in the strict sense of an abstract geometry, and since the space on which each of these geometric analogues differs, there's no guarantee that a solution on one space will directly correlate with the other.

An example of where this analogous relation has yet to necessarily produce results is the case of 6-dimensional Hilbert space, in which a SIC-POVM has been analytically computed using mathematical software, but no complete mutually unbiased bases has yet been discovered.[18]

References[edit]

  1. ^ C. M. Caves, C. A. Fuchs, and R. Schack, “Unknown Quantum States: The Quantum de Finetti Representation,” J. Math. Phys. 43, 4537–4559 (2002).
  2. ^ C. A. Fuchs and M. Sasaki, “Squeezing Quantum Information through a Classical Channel: Measuring the ‘Quantumness’ of a Set of Quantum States,” Quant. Info. Comp. 3, 377–404 (2003).
  3. ^ Appleby, Marcus; Flammia, Steven; McConnell, Gary; Yard, Jon (2017-04-24). "SICs and Algebraic Number Theory". Foundations of Physics: 1–18. arXiv:1701.05200Freely accessible. doi:10.1007/s10701-017-0090-7. ISSN 0015-9018. 
  4. ^ C.M. Caves (1999); http://info.phys.unm.edu/~caves/reports/infopovm.pdf
  5. ^ a b Robin Blume-Kohout, Joseph M. Renes, Andrew J. Scott, Carlton M. Caves, http://info.phys.unm.edu/papers/reports/sicpovm.html
  6. ^ a b Appleby, D. M. (2004). "SIC-POVMs and the Extended Clifford Group". Journal of Mathematical Physics. 46 (5): 052107. arXiv:quant-ph/0412001Freely accessible. doi:10.1063/1.1896384. 
  7. ^ a b G. Zauner, Quantendesigns – Grundzüge einer nichtkommutativen Designtheorie. Dissertation, Universität Wien, 1999.
  8. ^ a b c d Renes, Joseph M.; Blume-Kohout, Robin; Scott, A. J.; Caves, Carlton M. (2003). "Symmetric Informationally Complete Quantum Measurements". Journal of Mathematical Physics. 45 (6): 2171. arXiv:quant-ph/0310075Freely accessible. doi:10.1063/1.1737053. 
  9. ^ A. Koldobsky and H. K¨onig, “Aspects of the Isometric Theory of Banach Spaces,” in Handbook of the Geometry of Banach Spaces, Vol. 1, edited by W. B. Johnson and J. Lindenstrauss, (North Holland, Dordrecht, 2001), pp. 899–939.
  10. ^ a b Scott, A. J.; Grassl, M. (2009). "SIC-POVMs: A new computer study". Journal of Mathematical Physics. 51 (4): 042203. arXiv:0910.5784Freely accessible. doi:10.1063/1.3374022. 
  11. ^ TY Chien. ``Equiangular lines, projective symmetries and nice error frames. PhD thesis University of Auckland (2015); https://www.math.auckland.ac.nz/~waldron/Tuan/Thesis.pdf
  12. ^ "Exact SIC fiducial vectors". 
  13. ^ Appleby, Marcus; Chien, Tuan-Yow; Flammia, Steven; Waldron, Shayne (2017-03-17). "Constructing exact symmetric informationally complete measurements from numerical solutions". arXiv:1703.05981Freely accessible [quant-ph]. 
  14. ^ Fuchs, Christopher A.; Stacey, Blake C. (2016-12-21). "QBism: Quantum Theory as a Hero's Handbook". arXiv:1612.07308Freely accessible [quant-ph]. 
  15. ^ Scott, A. J. (2017-03-11). "SICs: Extending the list of solutions". arXiv:1703.03993Freely accessible [quant-ph]. 
  16. ^ Fuchs, Christopher A.; Hoang, Michael C.; Stacey, Blake C. (2017-03-22). "The SIC Question: History and State of Play". arXiv:1703.07901Freely accessible [quant-ph]. 
  17. ^ Wootters, William K. (2004). "Quantum measurements and finite geometry". arXiv:quant-ph/0406032Freely accessible. 
  18. ^ Grassl, Markus (2004). "On SIC-POVMs and MUBs in Dimension 6". arXiv:quant-ph/0406175Freely accessible. 

See also[edit]