From Wikipedia, the free encyclopedia
Jump to: navigation, search
Sirtuin 2
Protein SIRT2 PDB 1j8f.png
PDB rendering based on 1j8f.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols SIRT2 ; SIR2; SIR2L; SIR2L2
External IDs OMIM604480 MGI1927664 HomoloGene40823 ChEMBL: 4462 GeneCards: SIRT2 Gene
EC number 3.5.1.-
RNA expression pattern
PBB GE SIRT2 220605 s at tn.png
More reference expression data
Species Human Mouse
Entrez 22933 64383
Ensembl ENSG00000068903 ENSMUSG00000015149
UniProt Q8IXJ6 Q8VDQ8
RefSeq (mRNA) NM_001193286 NM_001122765
RefSeq (protein) NP_001180215 NP_001116237
Location (UCSC) Chr 19:
38.88 – 38.9 Mb
Chr 7:
28.77 – 28.79 Mb
PubMed search [1] [2]

NAD-dependent deacetylase sirtuin-2 is an enzyme that in humans is encoded by the SIRT2 gene.[1][2][3] SIRT2 is an NAD+ (nicotinamide adenine dinucleotide)-dependent deacetylase. Studies of this protein have often been divergent, highlighting the dependence of pleiotropic effects of SIRT2 on cellular context. The natural polyphenol resveratrol is known to exert opposite actions on neural cells according to their normal or cancerous status.[4] Similar to other sirtuin family members, SIRT2 displays a ubiquitous distribution. SIRT2 is expressed in a wide range of tissues and organs and has been detected particularly in metabolically relevant tissues, including the brain, muscle, liver, testes, pancreas, kidney, and adipose tissue of mice. Of note, SIRT2 expression is much higher in the brain than all other organs studied, particularly in the cortex, striatum, hippocampus, and spinal cord.[5]


Studies suggest that the human sirtuins may function as intracellular regulatory proteins with mono-ADP-ribosyltransferase activity.[3] Cytosolic functions of SIRT2 include the regulation of microtubule acetylation, control of myelination in the central and peripheral nervous system and gluconeogenesis.[6] There is growing evidence for additional functions of SIRT2 in the nucleus. During the G2/M transition, nuclear SIRT2 is responsible for global deacetylation of H4K16, facilitating H4K20 methylation and subsequent chromatin compaction.[7] In response to DNA damage, SIRT2 was also found to deacetylate H3K56 in vivo.[8] Finally, SIRT2 negatively regulates the acetyltransferase activity of the transcriptional co-activator p300 via deacetylation of an automodification loop within its catalytic domain.[9]



Human SIRT2 gene has 18 exons resides on chromosome 19 at q13.[3] For SIRT2, four different human splice variants are deposited in the GenBank sequence database.[10]


SIRT2 gene encodes a member of the sirtuin family of proteins, homologs to the yeast Sir2 protein. Members of the sirtuin family are characterized by a sirtuin core domain and grouped into four classes. The protein encoded by this gene is included in class I of the sirtuin family. Several transcript variants are resulted from alternative splicing of this gene.[3] Only transcript variants 1 and 2 have confirmed protein products of physiological relevance. A leucine-rich nuclear export signal (NES) within the N-terminal region of these two isoforms is identified.[10] Since deletion of the NES led to nucleocytoplasmic distribution, it is suggested to mediate their cytosolic localization.[11]

Selective ligands[edit]


  • Benzamide compound # 64[12]
  • (S)-2-Pentyl-6-chloro,8-bromo-chroman-4-one: IC50 of 1.5 μM, highly selective over SIRT2 and SIRT3[13]
  • 3′-Phenethyloxy-2-anilinobenzamide (33i): IC50 of 0.57 μM[14]

Model organisms[edit]

The functions of human sirtuins have not yet been determined; however, model organisms have been used in the study of SIRT2 function. Yeast sirtuin proteins are known to regulate epigenetic gene silencing and suppress recombination of rDNA.

A conditional knockout mouse line, called Sirt2tm1a(EUCOMM)Wtsi[16][17] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists — at the Wellcome Trust Sanger Institute.[18][19][20] Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[15][21] Twenty five tests were carried out on homozygous mutant adult mice, however no significant abnormalities were observed.[15]

Clinical significance[edit]

Metabolic Actions[edit]

Several SIRT2 deacetylation targets play important roles in metabolic homeostasis.

SIRT2 inhibits adipogenesis by deacetylating FOXO1 and thus may protect against insulin resistance.

SIRT2 sensitizes cells to the action of insulin by physically interacting with and activating Akt and downstream targets.

SIRT2 mediates mitochondrial biogenesis by deacetylating PGC-1α, upregulates antioxidant enzyme expression by deacetylating FOXO3a, and thereby reduces ROS levels.

SIRT2 suppresses inflammatory responses in mice through p65 deacetylation and inhibition of NF-κB activity.[22]

Cell Cycle Regulation[edit]

Although preferentially cytosolic, SIRT2 transiently shuttles to the nucleus during the G2/M transition of the cell cycle, where it has a strong preference for histone H4 lysine 16 (H4K16Ac),[23] thereby regulating chromosomal condensation during mitosis.[24] During the cell cycle, SIRT2 associates with several mitotic structures including the centrosome, mitotic spindle, and midbody, presumably to ensure normal cell division.[11] Finally, cells with SIRT2 overexpression exhibit marked prolongation of the cell cycle.[25]


Mounting evidence implies a role for SIRT2 in tumorigenesis. SIRT2 has been proposed to act as a tumor suppressor by preventing chromosomal instability during mitosis.[26] Further studies will be required to determine the therapeutic potential of targeting SIRT2 in cancer.


Several studies in cell and invertebrate models of Parkinson's disease (PD) and Huntington's disease (HD) suggested potential neuroprotective effects of SIRT2 inhibition, in striking contrast with other sirtuin family members.[27][28] In addition, recent evidence shows that inhibition of SIRT2 protects against MPTP-induced neuronal loss in vivo.[29]


SIRT2 has been shown to interact with:


  1. ^ Afshar G, Murnane JP (Jun 1999). "Characterization of a human gene with sequence homology to Saccharomyces cerevisiae SIR2". Gene 234 (1): 161–8. doi:10.1016/S0378-1119(99)00162-6. PMID 10393250. 
  2. ^ Frye RA (Jun 1999). "Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity". Biochemical and Biophysical Research Communications 260 (1): 273–9. doi:10.1006/bbrc.1999.0897. PMID 10381378. 
  3. ^ a b c d "Entrez Gene: SIRT2 sirtuin (silent mating type information regulation 2 homolog) 2 (S. cerevisiae)". 
  4. ^ Sayd S, Junier MP, Chneiweiss H (May 2014). "[SIRT2, a multi-talented deacetylase]". Médecine Sciences 30 (5): 532–6. doi:10.1051/medsci/20143005016. PMID 24939540. 
  5. ^ Maxwell MM, Tomkinson EM, Nobles J, Wizeman JW, Amore AM, Quinti L, Chopra V, Hersch SM, Kazantsev AG (Oct 2011). "The Sirtuin 2 microtubule deacetylase is an abundant neuronal protein that accumulates in the aging CNS". Human Molecular Genetics 20 (20): 3986–96. doi:10.1093/hmg/ddr326. PMID 21791548. 
  6. ^ North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (Feb 2003). "The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase". Molecular Cell 11 (2): 437–44. PMID 12620231. 
  7. ^ Serrano L, Martínez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N, Tong Q, Rabanal RM, Fondevila D, Muñoz P, Krüger M, Tischfield JA, Vaquero A (Mar 2013). "The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation". Genes & Development 27 (6): 639–53. doi:10.1101/gad.211342.112. PMID 23468428. 
  8. ^ Vempati RK, Jayani RS, Notani D, Sengupta A, Galande S, Haldar D (Sep 2010). "p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals". The Journal of Biological Chemistry 285 (37): 28553–64. doi:10.1074/jbc.M110.149393. PMID 20587414. 
  9. ^ Black JC, Mosley A, Kitada T, Washburn M, Carey M (Nov 2008). "The SIRT2 deacetylase regulates autoacetylation of p300". Molecular Cell 32 (3): 449–55. doi:10.1016/j.molcel.2008.09.018. PMID 18995842. 
  10. ^ a b Rack JG, VanLinden MR, Lutter T, Aasland R, Ziegler M (Apr 2014). "Constitutive nuclear localization of an alternatively spliced sirtuin-2 isoform". Journal of Molecular Biology 426 (8): 1677–91. doi:10.1016/j.jmb.2013.10.027. PMID 24177535. 
  11. ^ a b North BJ, Verdin E (29 August 2007). "Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis". PLOS ONE 2 (8): e784. doi:10.1371/journal.pone.0000784. PMID 17726514. 
  12. ^ Cui H, Kamal Z, Ai T, Xu Y, More SS, Wilson DJ, Chen L (Oct 2014). "Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach". Journal of Medicinal Chemistry 57 (20): 8340–57. doi:10.1021/jm500777s. PMID 25275824. 
  13. ^ Fridén-Saxin M, Seifert T, Landergren MR, Suuronen T, Lahtela-Kakkonen M, Jarho EM, Luthman K (Aug 2012). "Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors". Journal of Medicinal Chemistry 55 (16): 7104–13. doi:10.1021/jm3005288. PMC 3426190. PMID 22746324. 
  14. ^ Suzuki T, Khan MN, Sawada H, Imai E, Itoh Y, Yamatsuta K, Tokuda N, Takeuchi J, Seko T, Nakagawa H, Miyata N (Jun 2012). "Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors". Journal of Medicinal Chemistry 55 (12): 5760–73. doi:10.1021/jm3002108. PMID 22642300. 
  15. ^ a b c Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88 (S248). doi:10.1111/j.1755-3768.2010.4142.x. 
  16. ^ "International Knockout Mouse Consortium". 
  17. ^ "Mouse Genome Informatics". 
  18. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750. 
  19. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718. 
  20. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. 
  21. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biology 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353. 
  22. ^ Gomes P, Outeiro TF, Cavadas C (Nov 2015). "Emerging Role of Sirtuin 2 in the Regulation of Mammalian Metabolism". Trends in Pharmacological Sciences 36 (11): 756–68. doi:10.1016/ PMID 26538315. 
  23. ^ Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D (May 2006). "SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis". Genes & Development 20 (10): 1256–61. doi:10.1101/gad.1412706. PMID 16648462. 
  24. ^ Inoue T, Hiratsuka M, Osaki M, Yamada H, Kishimoto I, Yamaguchi S, Nakano S, Katoh M, Ito H, Oshimura M (Feb 2007). "SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress". Oncogene 26 (7): 945–57. doi:10.1038/sj.onc.1209857. PMID 16909107. 
  25. ^ Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA (May 2003). "Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle". Molecular and Cellular Biology 23 (9): 3173–85. PMID 12697818. 
  26. ^ Kim HS, Vassilopoulos A, Wang RH, Lahusen T, Xiao Z, Xu X, Li C, Veenstra TD, Li B, Yu H, Ji J, Wang XW, Park SH, Cha YI, Gius D, Deng CX (Oct 2011). "SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity". Cancer Cell 20 (4): 487–99. doi:10.1016/j.ccr.2011.09.004. PMID 22014574. 
  27. ^ Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev AG (Jul 2007). "Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease". Science 317 (5837): 516–9. doi:10.1126/science.1143780. PMID 17588900. 
  28. ^ Luthi-Carter R, Taylor DM, Pallos J, Lambert E, Amore A, Parker A, Moffitt H, Smith DL, Runne H, Gokce O, Kuhn A, Xiang Z, Maxwell MM, Reeves SA, Bates GP, Neri C, Thompson LM, Marsh JL, Kazantsev AG (Apr 2010). "SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis". Proceedings of the National Academy of Sciences of the United States of America 107 (17): 7927–32. doi:10.1073/pnas.1002924107. PMID 20378838. 
  29. ^ Chen X, Wales P, Quinti L, Zuo F, Moniot S, Herisson F, Rauf NA, Wang H, Silverman RB, Ayata C, Maxwell MM, Steegborn C, Schwarzschild MA, Outeiro TF, Kazantsev AG (2015). "The sirtuin-2 inhibitor AK7 is neuroprotective in models of Parkinson's disease but not amyotrophic lateral sclerosis and cerebral ischemia". PLOS ONE 10 (1): e0116919. doi:10.1371/journal.pone.0116919. PMID 25608039. 
  30. ^ Yuan Q, Zhan L, Zhou QY, Zhang LL, Chen XM, Hu XM, Yuan XC (Oct 2015). "SIRT2 regulates microtubule stabilization in diabetic cardiomyopathy". European Journal of Pharmacology 764: 554–61. doi:10.1016/j.ejphar.2015.07.045. PMID 26209361. 
  31. ^ Belman JP, Bian RR, Habtemichael EN, Li DT, Jurczak MJ, Alcázar-Román A, McNally LJ, Shulman GI, Bogan JS (Feb 2015). "Acetylation of TUG protein promotes the accumulation of GLUT4 glucose transporters in an insulin-responsive intracellular compartment". The Journal of Biological Chemistry 290 (7): 4447–63. doi:10.1074/jbc.M114.603977. PMID 25561724. 
  32. ^ Nguyen P, Lee S, Lorang-Leins D, Trepel J, Smart DK (Sep 2014). "SIRT2 interacts with β-catenin to inhibit Wnt signaling output in response to radiation-induced stress". Molecular Cancer Research 12 (9): 1244–53. doi:10.1158/1541-7786.MCR-14-0223-T. PMID 24866770. 
  33. ^ Xu Y, Li F, Lv L, Li T, Zhou X, Deng CX, Guan KL, Lei QY, Xiong Y (Jul 2014). "Oxidative stress activates SIRT2 to deacetylate and stimulate phosphoglycerate mutase". Cancer Research 74 (13): 3630–42. doi:10.1158/0008-5472.CAN-13-3615. PMID 24786789. 
  34. ^ Saxena M, Dykes SS, Malyarchuk S, Wang AE, Cardelli JA, Pruitt K (Jan 2015). "The sirtuins promote Dishevelled-1 scaffolding of TIAM1, Rac activation and cell migration". Oncogene 34 (2): 188–98. doi:10.1038/onc.2013.549. PMID 24362520. 
  35. ^ Theendakara V, Patent A, Peters Libeu CA, Philpot B, Flores S, Descamps O, Poksay KS, Zhang Q, Cailing G, Hart M, John V, Rao RV, Bredesen DE (Nov 2013). "Neuroprotective Sirtuin ratio reversed by ApoE4". Proceedings of the National Academy of Sciences of the United States of America 110 (45): 18303–8. doi:10.1073/pnas.1314145110. PMID 24145446. 
  36. ^ van Leeuwen IM, Higgins M, Campbell J, McCarthy AR, Sachweh MC, Navarro AM, Laín S (Apr 2013). "Modulation of p53 C-terminal acetylation by mdm2, p14ARF, and cytoplasmic SirT2". Molecular Cancer Therapeutics 12 (4): 471–80. doi:10.1158/1535-7163.MCT-12-0904. PMID 23416275. 
  37. ^ Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, Xiong Y, Guan KL, Zhao S (Jul 2011). "Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase". Molecular Cell 43 (1): 33–44. doi:10.1016/j.molcel.2011.04.028. PMID 21726808. 
  38. ^ Wang F, Tong Q (Feb 2009). "SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma". Molecular Biology of the Cell 20 (3): 801–8. doi:10.1091/mbc.E08-06-0647. PMID 19037106. 
  39. ^ Han Y, Jin YH, Kim YJ, Kang BY, Choi HJ, Kim DW, Yeo CY, Lee KY (Oct 2008). "Acetylation of Sirt2 by p300 attenuates its deacetylase activity". Biochemical and Biophysical Research Communications 375 (4): 576–80. doi:10.1016/j.bbrc.2008.08.042. PMID 18722353. 
  40. ^ Jin YH, Kim YJ, Kim DW, Baek KH, Kang BY, Yeo CY, Lee KY (Apr 2008). "Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53". Biochemical and Biophysical Research Communications 368 (3): 690–5. doi:10.1016/j.bbrc.2008.01.114. PMID 18249187. 
  41. ^ Shimazu T, Horinouchi S, Yoshida M (Feb 2007). "Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3'-end processing". The Journal of Biological Chemistry 282 (7): 4470–8. doi:10.1074/jbc.M609745200. PMID 17172643. 

Further reading[edit]