SMC1A

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
SMC1A
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesSMC1A, CDLS2, DXS423E, SB1.8, SMC1, SMC1L1, SMC1alpha, SMCB, structural maintenance of chromosomes 1A
External IDsOMIM: 300040 MGI: 1344345 HomoloGene: 4597 GeneCards: SMC1A
Gene location (Human)
X chromosome (human)
Chr.X chromosome (human)[1]
X chromosome (human)
Genomic location for SMC1A
Genomic location for SMC1A
BandXp11.22Start53,374,149 bp[1]
End53,422,728 bp[1]
RNA expression pattern
PBB GE SMC1A 201589 at fs.png

PBB GE SMC1A 217555 at fs.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006306
NM_001281463

NM_019710

RefSeq (protein)

NP_001268392
NP_006297
NP_006297.2

NP_062684

Location (UCSC)Chr X: 53.37 – 53.42 MbChr X: 152.02 – 152.06 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Structural maintenance of chromosomes protein 1A is a protein that in humans is encoded by the SMC1A gene.[5][6] SMC1A gene (also called SMC1L1, SMC1alpha) belongs to the Structural Maintenance of Chromosome family. This gene encodes a protein that is a component of cohesin, a highly conserved complex in eukaryotes, which ensures correct chromosome segregation during mitosis and meiosis.[7]

Gene and protein structure[edit]

SMC1A gene is located on human Xp11.22–Xp11.21 chromosome, in a region that escapes X inactivation.[8][9] SMC1A has multiple transcripts and the full-length gene codes a protein of 1,233 amino acids. SMC1A protein has a modular structure organized in five domains: N-terminal, coiled-coil, hinge, coiled-coil and C-terminal domain. The N-terminal domain holds a nucleoside triphosphate (NTP) binding motif (Walker A box), and is responsible for binding ATP. The C-terminal contains the DNA binding domain DA box (Walker B box). SMC proteins are preserved not only in sequence but also in structure. In mammals, the coiled-coil domains of SMC1A and SMC3, which belongs to the SMC family, have an amino acid sequence variation of only around 0.1%.

Interactions[edit]

SMC1A has been shown to interact with SMC3[10][11][12][13] and Ataxia telangiectasia mutated.[10] The hinge domain is responsible for SMC1A flexibility allowing homo- and hetero-dimerization, in particular with SMC3. The hinge domains of SMC1A-SMC3 heterodimer interact with each other while their head domains interact with RAD21, creating a closed ring-like structure. Finally, the cohesin complex is completed when the RAD21 subunit associates with SA1 or SA2 (also called STAG1 or STAG2) protein. Cohesin is also involved in meiotic chromosome segregation. Oocytes and spermatozoa express two different versions of cohesin complexes, containing either SMC1A or SMC1B (also called SMC1L2, SMC1beta). SMC1B is located on 22q13.31 human chromosome and codes a protein involved in sister chromatid cohesion, chromosome synapsis, and ensures telomere protection from rearrangement.[14][15][16][17][18] Although SMC1B is believed to be meiotic-specific, it has also been shown to be expressed in mitotic cells and is mutually exclusive with SMC1A.[19] SMC1A is also a component of the Recombination protein complex (RC-1) constituted by SMC1A, SMC3, a 5'-3' exonuclease, DNA polymerase ɛ and DNA ligase III. It is believed that RC-1 plays a role in the repair of double strand breaks and DNA deletion by recombination.[20][21][22][23] Finally, SMC1A interacts with RAE1 (RNA export factor 1), with Ataxia Telangiectasia Mutated (ATM) and the Ataxia Telangiectasia and Rad3 Related (ATR) (see both the “Function” and the “Genome instability and cancer” sections).

Function[edit]

In addition to entrapping DNA to ensure proper chromosome segregation during the cell cycle, SMC1A, as a component of cohesin, contributes to facilitating inter-chromatid contacts mediating distant-element interactions and to creating chromosome domains called topologically associating domains (TADs). It has been proposed that cohesin promotes the interaction between enhancers and promoters for regulating gene transcription regulation.[24][25][26][27][28][29] The removal of cohesin triggers abnormal TAD topology because loops spanning multiple compartment intervals lead to mixing among loci in different compartments[30][31] As a consequence, loop loss causes gene expression dysregulation.[30] SMC1A also plays a role in spindle pole formation. In fact, in association with SMC3, it is recruited to mitotic spindle poles through interaction with RAE1. The dysregulation of SMC1A (both down- and up-regulation) causes aberrant multi-polar spindles, suggesting that cohesin would function to hold microtubules at the spindle pole.[32][33] Proper cohesion of sister chromatids is a prerequisite for the correct segregation of chromosomes during cell division. The cohesin multiprotein complex is required for sister chromatid cohesion. This complex is composed partly of two structural maintenance of chromosomes (SMC) proteins, SMC3 and either SMC1L2 or the protein encoded by this gene. Most of the cohesin complexes dissociate from the chromosomes before mitosis, although those complexes at the kinetochore remain. Therefore, the encoded protein is thought to be an important part of functional kinetochores. In addition, this protein interacts with BRCA1 and is phosphorylated by ATM, indicating a potential role for this protein in DNA repair. This gene, which belongs to the SMC gene family, is located in an area of the X-chromosome that escapes X inactivation.[6]

Human disorders[edit]

Pathogenic variants in SMC1A, missense and small in frame deletions, are associated with Cornelia de Lange syndrome (CdLS, MIM #122470, #300590, #610759, #614701, #300882). CdLS is a human rare disease characterized by dysmorphic features, pre- and post-natal growth delay, intellectual disability that is usually moderate to severe, synophrys, hirsutism, and alterations in hands and fingers. Additional CdLS signs can include hearing loss, heart defects, microcephaly, (i.e., an unusually small head) and problems with the digestive tract.[34][35] The frequency varies from 1:10 000 to 1:30 000 live births without differences between ethnic groups.[36] SMC1A variants, which maintain the frame of their encoded proteins, are associated with milder CdLS phenotypes with moderate neurocognitive disability and a paucity of major structural defects. The phenotype of SMC1A affected males is more severe than that of mutated females.[37][38][39] Since SMC1A escapes X inactivation, it has been hypothesized that the mechanism in affected females is the dominant-negative effect of the mutated protein. The binding of mutated cohesin to chromatin is stronger than that of normal cohesin and disturbs the recruitment of RNA polymerase II.[40][41] It has been postulated that these phenomena trigger gene expression dysregulation that is a molecular marker of CdLS cells harboring SMC1A pathogenic variants.[42][43][41] Instead, SMC1A truncation variants have been described in females characterized by a clinical phenotype different from CdLS, with pharmaco-resistant epilepsy and moderate to severe neurological impairment.[44][45][46][47][48][49][50]

Genome instability and cancer[edit]

SMC1A also takes part in DNA repair. The down-regulation of SMC1A causes genome instability, and CdLS cells carrying SMC1A variants display high level of chromosome aberrations.[51][52][40][53] Furthermore, SMC1A is phosphorylated on Ser957 and Ser966 residues by ATM and ATR threonine/serine kinases following DNA damage induced by chemical treatment or ionizing radiation. It has been hypothesized that the Breast cancer type 1 susceptibility (BRCA1) gene collaborates in phosphorylating SMC1A, which is required for activation of the S-phase checkpoint allowing blocking of the cell cycle and the repair of DNA.[54][55][52] SMC1A variants have been identified in blood, brain, bladder, and colon cancer.[56][57][58][59][60][61][62] SMC1A plays a pivotal role in colorectal tumorigenesis. Indeed, colorectal tissue acquires extra-copies of SMC1A during cancer development and its expression is significantly stronger in carcinomas than in normal mucosa and early adenoma.[62] Finally, the up-regulation of SMC1A is thought to be a predictor of poor prognosis in colorectal cancer.[63]

See also[edit]


References[edit]

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000072501 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000041133 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Rocques PJ, Clark J, Ball S, Crew J, Gill S, Christodoulou Z, et al. (February 1995). "The human SB1.8 gene (DXS423E) encodes a putative chromosome segregation protein conserved in lower eukaryotes and prokaryotes". Human Molecular Genetics. 4 (2): 243–9. doi:10.1093/hmg/4.2.243. PMID 7757074.
  6. ^ a b "Entrez Gene: SMC1A structural maintenance of chromosomes 1A".
  7. ^ Yatskevich S, Rhodes J, Nasmyth K (December 2019). "Organization of Chromosomal DNA by SMC Complexes". Annual Review of Genetics. 53: 445–482. doi:10.1146/annurev-genet-112618-043633. PMID 31577909.
  8. ^ Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (January 1991). "A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome". Nature. 349 (6304): 38–44. Bibcode:1991Natur.349...38B. doi:10.1038/349038a0. PMID 1985261.
  9. ^ Lafrenière RG, Brown CJ, Powers VE, Carrel L, Davies KE, Barker DF, Willard HF (October 1991). "Physical mapping of 60 DNA markers in the p21.1----q21.3 region of the human X chromosome". Genomics. 11 (2): 352–63. doi:10.1016/0888-7543(91)90143-3. PMID 1685139.
  10. ^ a b Kim ST, Xu B, Kastan MB (March 2002). "Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage". Genes & Development. 16 (5): 560–70. doi:10.1101/gad.970602. PMC 155347. PMID 11877376.
  11. ^ Lee J, Iwai T, Yokota T, Yamashita M (July 2003). "Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis". Journal of Cell Science. 116 (Pt 13): 2781–90. doi:10.1242/jcs.00495. PMID 12759374.
  12. ^ Schmiesing JA, Ball AR, Gregson HC, Alderton JM, Zhou S, Yokomori K (October 1998). "Identification of two distinct human SMC protein complexes involved in mitotic chromosome dynamics". Proceedings of the National Academy of Sciences of the United States of America. 95 (22): 12906–11. Bibcode:1998PNAS...9512906S. doi:10.1073/pnas.95.22.12906. PMC 23650. PMID 9789013.
  13. ^ Gregson HC, Schmiesing JA, Kim JS, Kobayashi T, Zhou S, Yokomori K (December 2001). "A potential role for human cohesin in mitotic spindle aster assembly". The Journal of Biological Chemistry. 276 (50): 47575–82. doi:10.1074/jbc.M103364200. PMID 11590136.
  14. ^ Novak I, Wang H, Revenkova E, Jessberger R, Scherthan H, Höög C (January 2008). "Cohesin Smc1beta determines meiotic chromatin axis loop organization". The Journal of Cell Biology. 180 (1): 83–90. doi:10.1083/jcb.200706136. PMC 2213612. PMID 18180366.
  15. ^ Adelfalk C, Janschek J, Revenkova E, Blei C, Liebe B, Göb E, et al. (October 2009). "Cohesin SMC1beta protects telomeres in meiocytes". The Journal of Cell Biology. 187 (2): 185–99. doi:10.1083/jcb.200808016. PMC 2768837. PMID 19841137.
  16. ^ Biswas U, Wetzker C, Lange J, Christodoulou EG, Seifert M, Beyer A, Jessberger R (2013). "Meiotic cohesin SMC1β provides prophase I centromeric cohesion and is required for multiple synapsis-associated functions". PLoS Genetics. 9 (12): e1003985. doi:10.1371/journal.pgen.1003985. PMC 3873225. PMID 24385917.
  17. ^ Murdoch B, Owen N, Stevense M, Smith H, Nagaoka S, Hassold T, et al. (2013). "Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior". PLoS Genetics. 9 (2): e1003241. doi:10.1371/journal.pgen.1003241. PMC 3567145. PMID 23408896.
  18. ^ Biswas U, Stevense M, Jessberger R (January 2018). "SMC1α Substitutes for Many Meiotic Functions of SMC1β but Cannot Protect Telomeres from Damage". Current Biology. 28 (2): 249–261.e4. doi:10.1016/j.cub.2017.12.020. PMC 5788747. PMID 29337080.
  19. ^ Mannini L, Cucco F, Quarantotti V, Amato C, Tinti M, Tana L, et al. (December 2015). "SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins". Scientific Reports. 5: 18472. Bibcode:2015NatSR...518472M. doi:10.1038/srep18472. PMC 4682075. PMID 26673124.
  20. ^ Jessberger R, Podust V, Hübscher U, Berg P (July 1993). "A mammalian protein complex that repairs double-strand breaks and deletions by recombination". The Journal of Biological Chemistry. 268 (20): 15070–9. PMID 8392064.
  21. ^ Jessberger R, Chui G, Linn S, Kemper B (February 1996). "Analysis of the mammalian recombination protein complex RC-1". Mutation Research. 350 (1): 217–27. doi:10.1016/0027-5107(95)00106-9. PMID 8657184.
  22. ^ Jessberger R, Riwar B, Baechtold H, Akhmedov AT (August 1996). "SMC proteins constitute two subunits of the mammalian recombination complex RC-1". The EMBO Journal. 15 (15): 4061–8. doi:10.1002/j.1460-2075.1996.tb00779.x. PMC 452126. PMID 8670910.
  23. ^ Stursberg S, Riwar B, Jessberger R (March 1999). "Cloning and characterization of mammalian SMC1 and SMC3 genes and proteins, components of the DNA recombination complexes RC-1". Gene. 228 (1–2): 1–12. doi:10.1016/s0378-1119(99)00021-9. PMID 10072753.
  24. ^ Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, et al. (February 2008). "Cohesin mediates transcriptional insulation by CCCTC-binding factor". Nature. 451 (7180): 796–801. Bibcode:2008Natur.451..796W. doi:10.1038/nature06634. PMID 18235444.
  25. ^ Hadjur S, Williams LM, Ryan NK, Cobb BS, Sexton T, Fraser P, et al. (July 2009). "Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus". Nature. 460 (7253): 410–3. Bibcode:2009Natur.460..410H. doi:10.1038/nature08079. PMC 2869028. PMID 19458616.
  26. ^ Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. (April 2012). "Topological domains in mammalian genomes identified by analysis of chromatin interactions". Nature. 485 (7398): 376–80. Bibcode:2012Natur.485..376D. doi:10.1038/nature11082. PMC 3356448. PMID 22495300.
  27. ^ Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. (April 2012). "Spatial partitioning of the regulatory landscape of the X-inactivation centre". Nature. 485 (7398): 381–5. Bibcode:2012Natur.485..381N. doi:10.1038/nature11049. PMC 3555144. PMID 22495304.
  28. ^ Seitan VC, Faure AJ, Zhan Y, McCord RP, Lajoie BR, Ing-Simmons E, et al. (December 2013). "Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments". Genome Research. 23 (12): 2066–77. doi:10.1101/gr.161620.113. PMC 3847776. PMID 24002784.
  29. ^ Sofueva S, Yaffe E, Chan WC, Georgopoulou D, Vietri Rudan M, Mira-Bontenbal H, et al. (December 2013). "Cohesin-mediated interactions organize chromosomal domain architecture". The EMBO Journal. 32 (24): 3119–29. doi:10.1038/emboj.2013.237. PMC 4489921. PMID 24185899.
  30. ^ a b Rao SS, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, et al. (October 2017). "Cohesin Loss Eliminates All Loop Domains". Cell. 171 (2): 305–320.e24. doi:10.1016/j.cell.2017.09.026. PMC 5846482. PMID 28985562.
  31. ^ Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, et al. (November 2017). "Two independent modes of chromatin organization revealed by cohesin removal". Nature. 551 (7678): 51–56. Bibcode:2017Natur.551...51S. doi:10.1038/nature24281. PMC 5687303. PMID 29094699.
  32. ^ Wong RW (January 2010). "Interaction between Rae1 and cohesin subunit SMC1 is required for proper spindle formation". Cell Cycle. 9 (1): 198–200. doi:10.4161/cc.9.1.10431. PMID 20016259.
  33. ^ Wong RW (May 2010). "An update on cohesin function as a 'molecular glue' on chromosomes and spindles". Cell Cycle. 9 (9): 1754–8. doi:10.4161/cc.9.9.11806. PMID 20436296.
  34. ^ Kline AD, Moss JF, Selicorni A, Bisgaard AM, Deardorff MA, Gillett PM, et al. (October 2018). "Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement" (PDF). Nature Reviews. Genetics. 19 (10): 649–666. doi:10.1038/s41576-018-0031-0. PMID 29995837.
  35. ^ Sarogni P, Pallotta MM, Musio A (November 2019). "Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach". Journal of Medical Genetics: jmedgenet-2019-106277. doi:10.1136/jmedgenet-2019-106277. PMID 31704779.
  36. ^ Ramos FJ, Puisac B, Baquero-Montoya C, Gil-Rodríguez MC, Bueno I, Deardorff MA, et al. (October 2015). "Clinical utility gene card for: Cornelia de Lange syndrome". European Journal of Human Genetics. 23 (10): 1431. doi:10.1038/ejhg.2014.270. PMC 4592075. PMID 25537356.
  37. ^ Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S, et al. (May 2006). "X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations". Nature Genetics. 38 (5): 528–30. doi:10.1038/ng1779. PMID 16604071.
  38. ^ Borck G, Zarhrate M, Bonnefont JP, Munnich A, Cormier-Daire V, Colleaux L (February 2007). "Incidence and clinical features of X-linked Cornelia de Lange syndrome due to SMC1L1 mutations". Human Mutation. 28 (2): 205–6. doi:10.1002/humu.9478. PMID 17221863.
  39. ^ Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, et al. (March 2007). "Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation". American Journal of Human Genetics. 80 (3): 485–94. doi:10.1086/511888. PMC 1821101. PMID 17273969.
  40. ^ a b Revenkova E, Focarelli ML, Susani L, Paulis M, Bassi MT, Mannini L, et al. (February 2009). "Cornelia de Lange syndrome mutations in SMC1A or SMC3 affect binding to DNA". Human Molecular Genetics. 18 (3): 418–27. doi:10.1093/hmg/ddn369. PMC 2722190. PMID 18996922.
  41. ^ a b Mannini L, C Lamaze F, Cucco F, Amato C, Quarantotti V, Rizzo IM, et al. (November 2015). "Mutant cohesin affects RNA polymerase II regulation in Cornelia de Lange syndrome". Scientific Reports. 5: 16803. Bibcode:2015NatSR...516803M. doi:10.1038/srep16803. PMC 4652179. PMID 26581180.
  42. ^ Liu J, Zhang Z, Bando M, Itoh T, Deardorff MA, Clark D, et al. (May 2009). "Transcriptional dysregulation in NIPBL and cohesin mutant human cells". PLoS Biology. 7 (5): e1000119. doi:10.1371/journal.pbio.1000119. PMC 2680332. PMID 19468298.
  43. ^ Gimigliano A, Mannini L, Bianchi L, Puglia M, Deardorff MA, Menga S, et al. (December 2012). "Proteomic profile identifies dysregulated pathways in Cornelia de Lange syndrome cells with distinct mutations in SMC1A and SMC3 genes". Journal of Proteome Research. 11 (12): 6111–23. doi:10.1021/pr300760p. PMC 3519430. PMID 23106691.
  44. ^ Goldstein JH, Tim-Aroon T, Shieh J, Merrill M, Deeb KK, Zhang S, et al. (October 2015). "Novel SMC1A frameshift mutations in children with developmental delay and epilepsy". European Journal of Medical Genetics. 58 (10): 562–8. doi:10.1016/j.ejmg.2015.09.007. PMID 26386245.
  45. ^ Lebrun N, Lebon S, Jeannet PY, Jacquemont S, Billuart P, Bienvenu T (December 2015). "Early-onset encephalopathy with epilepsy associated with a novel splice site mutation in SMC1A". American Journal of Medical Genetics. Part A. 167A (12): 3076–81. doi:10.1002/ajmg.a.37364. PMID 26358754.
  46. ^ Jansen S, Kleefstra T, Willemsen MH, de Vries P, Pfundt R, Hehir-Kwa JY, et al. (November 2016). "De novo loss-of-function mutations in X-linked SMC1A cause severe ID and therapy-resistant epilepsy in females: expanding the phenotypic spectrum". Clinical Genetics. 90 (5): 413–419. doi:10.1111/cge.12729. PMID 26752331.
  47. ^ Gorman KM, Forman E, Conroy J, Allen NM, Shahwan A, Lynch SA, et al. (July 2017). "Novel SMC1A variant and epilepsy of infancy with migrating focal seizures: Expansion of the phenotype". Epilepsia. 58 (7): 1301–1302. doi:10.1111/epi.13794. PMID 28677859.
  48. ^ Huisman S, Mulder PA, Redeker E, Bader I, Bisgaard AM, Brooks A, et al. (August 2017). "Phenotypes and genotypes in individuals with SMC1A variants". American Journal of Medical Genetics. Part A. 173 (8): 2108–2125. doi:10.1002/ajmg.a.38279. PMID 28548707.
  49. ^ Symonds JD, Joss S, Metcalfe KA, Somarathi S, Cruden J, Devlin AM, et al. (April 2017). "Heterozygous truncation mutations of the SMC1A gene cause a severe early onset epilepsy with cluster seizures in females: Detailed phenotyping of 10 new cases" (PDF). Epilepsia. 58 (4): 565–575. doi:10.1111/epi.13669. PMID 28166369.
  50. ^ Chinen Y, Nakamura S, Kaneshi T, Nakayashiro M, Yanagi K, Kaname T, et al. (2019). "SMC1A mutation in a patient with intractable epilepsy and cardiac malformation". Human Genome Variation. 6: 23. doi:10.1038/s41439-019-0053-y. PMC 6513828. PMID 31098032.
  51. ^ Musio A, Montagna C, Zambroni D, Indino E, Barbieri O, Citti L, et al. (June 2003). "Inhibition of BUB1 results in genomic instability and anchorage-independent growth of normal human fibroblasts". Cancer Research. 63 (11): 2855–63. PMID 12782591.
  52. ^ a b Musio A, Montagna C, Mariani T, Tilenni M, Focarelli ML, Brait L, et al. (February 2005). "SMC1 involvement in fragile site expression". Human Molecular Genetics. 14 (4): 525–33. doi:10.1093/hmg/ddi049. PMID 15640246.
  53. ^ Cukrov D, Newman TA, Leask M, Leeke B, Sarogni P, Patimo A, et al. (September 2018). "Antioxidant treatment ameliorates phenotypic features of SMC1A-mutated Cornelia de Lange syndrome in vitro and in vivo". Human Molecular Genetics. 27 (17): 3002–3011. doi:10.1093/hmg/ddy203. PMID 29860495.
  54. ^ Kim ST, Xu B, Kastan MB (March 2002). "Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage". Genes & Development. 16 (5): 560–70. doi:10.1101/gad.970602. PMC 155347. PMID 11877376.
  55. ^ Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J (March 2002). "SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint". Genes & Development. 16 (5): 571–82. doi:10.1101/gad.970702. PMC 155356. PMID 11877377.
  56. ^ Balbás-Martínez C, Sagrera A, Carrillo-de-Santa-Pau E, Earl J, Márquez M, Vazquez M, et al. (December 2013). "Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy". Nature Genetics. 45 (12): 1464–9. doi:10.1038/ng.2799. PMC 3840052. PMID 24121791.
  57. ^ Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. (May 2013). "Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia". The New England Journal of Medicine. 368 (22): 2059–74. doi:10.1056/NEJMoa1301689. PMC 3767041. PMID 23634996.
  58. ^ Cucco F, Servadio A, Gatti V, Bianchi P, Mannini L, Prodosmo A, et al. (December 2014). "Mutant cohesin drives chromosomal instability in early colorectal adenomas". Human Molecular Genetics. 23 (25): 6773–8. doi:10.1093/hmg/ddu394. PMID 25080505.
  59. ^ Huether R, Dong L, Chen X, Wu G, Parker M, Wei L, et al. (April 2014). "The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes". Nature Communications. 5: 3630. Bibcode:2014NatCo...5.3630H. doi:10.1038/ncomms4630. PMC 4119022. PMID 24710217.
  60. ^ Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ, et al. (February 2014). "Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications". Blood. 123 (6): 914–20. doi:10.1182/blood-2013-07-518746. PMID 24335498.
  61. ^ Cessna MH, Paulraj P, Hilton B, Sadre-Bazzaz K, Szankasi P, Cluff A, et al. (October 2019). "Chronic myelomonocytic leukemia with ETV6-ABL1 rearrangement and SMC1A mutation". Cancer Genetics. 238: 31–36. doi:10.1016/j.cancergen.2019.07.004. PMID 31425923.
  62. ^ a b Sarogni P, Palumbo O, Servadio A, Astigiano S, D'Alessio B, Gatti V, et al. (March 2019). "Overexpression of the cohesin-core subunit SMC1A contributes to colorectal cancer development". Journal of Experimental & Clinical Cancer Research. 38 (1): 108. doi:10.1186/s13046-019-1116-0. PMC 6397456. PMID 30823889.
  63. ^ Wang J, Yu S, Cui L, Wang W, Li J, Wang K, Lao X (March 2015). "Role of SMC1A overexpression as a predictor of poor prognosis in late stage colorectal cancer". BMC Cancer. 15: 90. doi:10.1186/s12885-015-1085-4. PMC 4352287. PMID 25884313.


Further reading[edit]

  • Nakajima D, Okazaki N, Yamakawa H, Kikuno R, Ohara O, Nagase T (June 2002). "Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones". DNA Research. 9 (3): 99–106. doi:10.1093/dnares/9.3.99. PMID 12168954.

External links[edit]