Sequestosome 1

From Wikipedia, the free encyclopedia
  (Redirected from SQSTM1)
Jump to: navigation, search
SQSTM1
Protein SQSTM1 PDB 1q02.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SQSTM1, A170, OSIL, PDB3, ZIP3, p60, p62, p62B, FTDALS3, Sequestosome 1, NADGP, DMRV
External IDs MGI: 107931 HomoloGene: 31202 GeneCards: SQSTM1
RNA expression pattern
PBB GE SQSTM1 213112 s at fs.png

PBB GE SQSTM1 201471 s at fs.png
More reference expression data
Orthologs
Species Human Mouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001142298
NM_001142299
NM_003900

NM_001290769
NM_011018

RefSeq (protein)

NP_001135770
NP_001135771
NP_003891

NP_001277698
NP_035148

Location (UCSC) Chr 5: 179.81 – 179.84 Mb Chr 11: 50.2 – 50.21 Mb
PubMed search [1] [2]
Wikidata
View/Edit Human View/Edit Mouse

Sequestosome-1 is a protein that in humans is encoded by the SQSTM1 gene.[3][4][5] Also known as the ubiquitin-binding protein p62,[6] it is an autophagosome cargo protein that targets other proteins that bind to it for selective autophagy. By interacting with GATA4 and targeting it for degradation, it can inhibit GATA-4 associated senescence and senescence-associated secretory phenotype.[7]

Model organisms[edit]

Model organisms have been used in the study of SQSTM1 function. A conditional knockout mouse line, called Sqstm1tm1a(KOMP)Wtsi[13][14] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[15][16][17]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[11][18] Twenty two tests were carried out on homozygous mutant mice and one significant abnormality was observed: females had abnormal complete blood count parameters, including an increased red blood cell distribution width and increased mean platelet volume.[11]

Interactions[edit]

Sequestosome 1 has been shown to interact with:

References[edit]

  1. ^ "Human PubMed Reference:". 
  2. ^ "Mouse PubMed Reference:". 
  3. ^ Joung I, Strominger JL, Shin J (July 1996). "Molecular cloning of a phosphotyrosine-independent ligand of the p56lck SH2 domain". Proc Natl Acad Sci U S A. 93 (12): 5991–5. PMC 39176Freely accessible. PMID 8650207. doi:10.1073/pnas.93.12.5991. 
  4. ^ Devergne O, Hummel M, Koeppen H, Le Beau MM, Nathanson EC, Kieff E, Birkenbach M (February 1996). "A novel interleukin-12 p40-related protein induced by latent Epstein-Barr virus infection in B lymphocytes". J Virol. 70 (2): 1143–53. PMC 189923Freely accessible. PMID 8551575. 
  5. ^ "Entrez Gene: SQSTM1 sequestosome 1". 
  6. ^ Online Mendelian Inheritance in Man (OMIM) 601530
  7. ^ Cassidy LD, Narita M (2015). "GATA get a hold on senescence". Science. 349 (6255): 1448–9. PMID 26404812. doi:10.1126/science.aad2501. 
  8. ^ "Haematology data for Sqstm1". Wellcome Trust Sanger Institute. 
  9. ^ "Salmonella infection data for Sqstm1". Wellcome Trust Sanger Institute. 
  10. ^ "Citrobacter infection data for Sqstm1". Wellcome Trust Sanger Institute. 
  11. ^ a b c Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  12. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  13. ^ "International Knockout Mouse Consortium". 
  14. ^ "Mouse Genome Informatics". 
  15. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. PMC 3572410Freely accessible. PMID 21677750. doi:10.1038/nature10163. 
  16. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. PMID 21677718. doi:10.1038/474262a. 
  17. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. PMID 17218247. doi:10.1016/j.cell.2006.12.018. 
  18. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol. 12 (6): 224. PMC 3218837Freely accessible. PMID 21722353. doi:10.1186/gb-2011-12-6-224. 
  19. ^ Shvets E, Fass E, Scherz-Shouval R, Elazar Z (August 2008). "The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes". J. Cell. Sci. 121 (Pt 16): 2685–95. PMID 18653543. doi:10.1242/jcs.026005. 
  20. ^ Sanchez P, De Carcer G, Sandoval IV, Moscat J, Diaz-Meco MT (May 1998). "Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62". Mol. Cell. Biol. 18 (5): 3069–80. PMC 110686Freely accessible. PMID 9566925. doi:10.1128/mcb.18.5.3069. 
  21. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. PMID 16189514. doi:10.1038/nature04209. 
  22. ^ Sanz L, Sanchez P, Lallena MJ, Diaz-Meco MT, Moscat J. "The interaction of p62 with RIP links the atypical PKCs to NF-kappaB activation". EMBO J. 18 (11): 3044–53. PMC 1171386Freely accessible. PMID 10356400. doi:10.1093/emboj/18.11.3044. 
  23. ^ Sanz L, Diaz-Meco MT, Nakano H, Moscat J (April 2000). "The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway". EMBO J. 19 (7): 1576–86. PMC 310227Freely accessible. PMID 10747026. doi:10.1093/emboj/19.7.1576. 
  24. ^ Wooten MW, Seibenhener ML, Mamidipudi V, Diaz-Meco MT, Barker PA, Moscat J (March 2001). "The atypical protein kinase C-interacting protein p62 is a scaffold for NF-kappaB activation by nerve growth factor". J. Biol. Chem. 276 (11): 7709–12. PMID 11244088. doi:10.1074/jbc.C000869200. 
  25. ^ a b Geetha T, Wooten MW (February 2003). "Association of the atypical protein kinase C-interacting protein p62/ZIP with nerve growth factor receptor TrkA regulates receptor trafficking and Erk5 signaling". J. Biol. Chem. 278 (7): 4730–9. PMID 12471037. doi:10.1074/jbc.M208468200. 
  26. ^ a b Jadhav T, Geetha T, Jiang J, Wooten MW. "Identification of a consensus site for TRAF6/p62 polyubiquitination". Biochem. Biophys. Res. Commun. 371 (3): 521–4. PMC 2474794Freely accessible. PMID 18457658. doi:10.1016/j.bbrc.2008.04.138. 
  27. ^ Wooten MW, Geetha T, Babu JR, Seibenhener ML, Peng J, Cox N, Diaz-Meco MT, Moscat J (March 2008). "Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins". J. Biol. Chem. 283 (11): 6783–9. PMID 18174161. doi:10.1074/jbc.M709496200. 

Further reading[edit]