From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Sapropel (a contraction of ancient Greek words sapros and pelos, meaning putrefaction and mud (or clay), respectively) is a term used in marine geology to describe dark-coloured sediments that are rich in organic matter. Organic carbon concentrations in sapropels commonly exceed 2 wt.% in weight.

The term sapropel events may also refer to cyclic oceanic anoxic event (OAE), in particular those affecting the Mediterranean Sea with a periodicity of about 21,000 years.


Sapropels have been recorded in the Mediterranean sediments since the closure of the Eastern Tethys Ocean 13.5 million years ago. The formation of sapropel events in the Mediterranean Sea occurs approximately every 21,000 years and last between 3,000 and 5,000 years. The first identification of sapropel events occurred in the middle of the 20th century. Since then, their conditions of formation have been investigated.

The occurrence of sapropels has been found to be related to the Earth's orbital parameter (Milankovitch cycles). The Earth's precession cycles influence the African monsoon, which influences the Mediterranean circulation via an increase in freshwater inputs.

Sapropels develop during episodes of reduced oxygen availability in bottom waters, such as an oceanic anoxic event (OAE). Most studies of sapropel formation mechanisms infer some degree of reduced deep-water circulation. Oxygen can only reach the deep sea by new deep-water formation and consequent "ventilation" of deep basins. There are two main causes of OAE: A reduction in deep-water circulation or a raised upper level oxygen demand.

A reduction in deep-water circulation will eventually lead to a serious decrease in deep-water oxygen concentrations due to biochemical oxygen demand associated with the decay of organic matter that sinks into the deep sea as a result of export production from surface waters. Oxygen depletion in bottom waters then favours the enhanced preservation of the sinking organic matter during burial in the sediments. Organic-rich sediments may also form in well-ventilated settings that have highly productive surface waters; here the high surface demand simply extracts the oxygen before it can enter the deep circulation currents so depriving the bottom waters of oxygen.


Sapropelic deposits from global ocean anoxic events form important oil source rocks. Detailed process studies of sapropel formation have concentrated on the fairly recent eastern Mediterranean sapropels,[1] the last of which was deposited between 9.5 and 5.5 thousand years ago.

The Mediterranean sapropels of the Pleistocene reflect increased density stratification in the isolated Mediterranean basin. They record a higher organic carbon concentration than non-sapropel times; an increase in the δ15N and corresponding decrease in δ13C tells of rising productivity as a result of nitrogen fixation.[2] This effect is more pronounced further east in the basin, suggesting that increased precipitation was most pronounced at that end of the sea.[2]

Non-conventional source of energy[edit]

Bulgarian Professor Petko Dimitrov is the creator of the idea for the application of sapropel sediments from the bottom of the Black Sea as a natural ecological fertilizer and biological products.[3][4] According to the Romanian tycoon Dinu Patriciu, the sapropel sediments have the potential of being developed as a source of non-conventional energy.[5] Dinu Patriciu has elaborated a marine exploration project in the Black Sea, that examines the sapropel sediments in that region, with sediment cores collected and investigated by several universities and research institutes across the world.[5]

See also[edit]


  1. ^ Eelco J. Rohling, 2001, The Dark Secret of the Mediterranean, 2001, School of Ocean and Earth Science, Southampton Oceanography Centre
  2. ^ a b Philip A. Meyers and Michela Arnaboldia (2008). "Paleoceanographic implications of nitrogen and organic carbon isotopic excursions in mid-Pleistocene sapropels from the Tyrrhenian and Levantine Basins, Mediterranean Sea". Palaeogeography, Palaeoclimatology, Palaeoecology. 266 (1–2): 112–118. doi:10.1016/j.palaeo.2008.03.018.
  3. ^ Dimitrov P., et al. (2000). Amendment for soils and substrates, doi:10.13140/RG.2.2.28181.63205, Patent BG No. 63868, Register No. 104106.
  4. ^ Dimitrov D. (2010). Geology and Non-traditional resources of the Black Sea. LAP – Lambert Academic Publishing. ISBN 978-3-8383-8639-3. 244 p. Bibcode:2012QuInt.279R.119D, doi:10.1016/j.quaint.2012.07.527
  5. ^ a b Patriciu: Examination of sapropelic mud in Black Sea could last 2-3 years, 19 June 2009,, retrieved at 30 July 2010

External links[edit]