Satellite internet constellation

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

A satellite internet constellation is a constellation of artificial satellites providing satellite internet service. In particular, the term has come to refer to a new generation of very large constellations (sometimes referred to as a megaconstellations[1]) orbiting in low Earth orbit (LEO) to provide low-latency, high bandwidth (broadband) internet service.[2]


While more-limited satellite internet services have been available through geosynchronous commsats orbiting in geostationary orbit for years, these have been of quite limited bandwidth (not broadband), high-latency, and provided at such a relatively high price that demand for the services offered has been quite low.[3][4][5]

In the 1990s, several LEO satellite internet constellations were proposed and developed, including Celestri (63 satellites) and Teledesic (initially 840, later 288 satellites). These projects were abandoned after the bankruptcy of the Iridium and Globalstar satellite phone constellations in the early 00's.

In the 2010s, interest in satellite internet constellations reemerged due to the dropping cost of launching to space and the increased demand for broadband internet access. Internet satellite constellations are planned by private companies like OneWeb (OneWeb constellation),[6][7] SpaceX (Starlink),[8][9] Amazon (Project Kuiper),[10][11] Samsung, Boeing and Russia's Roscosmos (Sfera)[12][13] and China (Hongwan, 2018,[2] or national satellite internet project, 2021).[14]. By late 2018, more than 18,000 new satellites had been proposed to be launched and placed in LEO orbits between 2019 and 2025.[2] This is more than ten times as many satellites as the sum of all active satellites in space as of March 2018. More recent proposals by 2020 could bring that number to over 100,000.[15]

A year after the start of fielding the first satellite internet constellation—Starlink which began launching in late 2019 and began beta test of the network in late 2020; OneWeb began satellite deployment in 1H2020—the competitive disruption to established satellite company business models began to be better understood. In early 2021, the three largest European satellite operators SES, Eutelsat, and Hispasat—which had until that time eschewed developing and fielding a broadband satellite internet constellation with private funds—informed the European Commission that they would be willing invest in the development of such a project if the European Union were to invest government funds in the effort as well.[16] All three companies had formerly focused on the provision of communication services from GEO and MEO orbits, while the newer satellite internet providers have been fielding their constellations exclusively in LEO.[16]


Proposed systems vary greatly in the number of satellites, the types of orbits and the telecommunication architecture (in particular the presence or absence of inter-satellite links). System designs have been analyzed using statistical methods and simulations to estimate the total throughput.[17] Particularly challenging is the dynamic nature of the network, as LEO satellites typically pass over a given location in less than 10 minutes.[18]


For continental distances (greater than about 3,000 km[19]), LEO satellite internet networks are expected to be able to provide lower latency than optical fiber links.[20][19][21] This is expected to hold even without inter-satellite links, using only ground station relays.[22][23] The new networks are said to be able to "potentially compete with today's ISPs in many settings".[19]


Critics have objected against the increased light pollution for astronomy and the increased possibility satellite collisions resulting in space debris. Astronomers have studied the potential effects increased satellite usage in Low Earth Orbit would have on very large telescope that use ultra-wide imaging exposures, such as the 8.4-meter Simonyi Survey Telescope[24] used in the Legacy Survey of Space and Time project at the Vera C. Rubin Observatory. They found that 30 to 40% of exposures could be compromised during the first and last hours of the night.[25]

Astronomers have also voiced concern over the impact satellite internet constellations will have on radio astronomy.[26]



  • Iridium satellite constellation — an operational constellation of 66 active satellites used to provide global satellite phone service
  • Orbcomm — an operational constellation used to provide global asset monitoring and messaging services from its constellation of 29 LEO communications satellites orbiting at 775 km
  • Globalstar — a satellite phone and low-speed data communications, second-generation constellation consists of 24 low Earth orbiting (LEO) satellites
  • Starlink — a satellite constellation development project underway by SpaceX to deploy nearly 12,000 satellites in three orbital shells by the mid-2020s
  • Lynk Global — a satellite-to-mobile-phone satellite constellation with the objective of coverage to traditional low-cost mobile devices
  • Teledesic — a former (1990s) venture to accomplish broadband satellite internet services
  • Viasat, Inc. — a current broadband satellite provider providing fixed, ground mobile, and airborne antennas
  • OneWeb constellation — 648-satellite network is planned for completion by late 2022
  • Project Kuiper — Amazon's planned to consist of 3,236 satellites operating in three orbital shells

See also[edit]


  1. ^ Henry, Caleb (25 June 2019). "Megaconstellation ventures cautious about deployment milestones". SpaceNews. Retrieved 3 July 2019.
  2. ^ a b c "NSR Reports China's Ambitious Constellation of 300 Small Satellites in LEO". SatNews. 8 March 2018. Retrieved 24 March 2018. The most visible or at least, the most talked about LEO contenders stem from the U.S. and Canada, numbering at least 11 with planned satellites to be deployed at around 18,000.
  3. ^ Brodkin, Jon (15 February 2013). "Satellite Internet faster than advertised, but latency still awful". Ars Technica. Retrieved 24 March 2018. Satellite latency is 638ms, 20 times higher than terrestrial broadband.
  4. ^ "Latency- why is it a big deal for Satellite Internet?". VSAT Systems. 2013. Retrieved 24 March 2018.
  5. ^ "What is the difference between terrestrial (land based) Internet and satellite Internet service?". Network Innovation Associates. 2014. Retrieved 24 March 2018.
  6. ^ Boucher, Marc (3 June 2014). "Will Google Build a Satellite Constellation?". SpaceRef Business. Retrieved 25 March 2018.
  7. ^ Winkler, Rolfe; Pasztor, Andy (11 July 2014). "Elon Musk's Next Mission: Internet Satellites SpaceX, Tesla Founder Explores Venture to Make Lighter, Cheaper Satellites". Wall Street Journal. Retrieved 25 March 2018.
  8. ^ Petersen, Melody (16 January 2015). "Elon Musk and Richard Branson invest in satellite-Internet ventures". Los Angeles Times. Retrieved 19 January 2015.
  9. ^ Brodkin, Jon (4 October 2017). "SpaceX and OneWeb broadband satellites raise fears about space debris". Ars Technica. Retrieved 7 October 2017.
  10. ^ Sheetz, Michael (4 April 2019). "Amazon wants to launch thousands of satellites so it can offer broadband internet from space". CNBC. Retrieved 19 September 2019.
  11. ^ Amazon lays out constellation service goals, deployment and deorbit plans to FCC, Caleb Henry, SpaceNews, 8 July 2019, accessed 19 September 2019.
  12. ^ "Russia to start deploying new cluster of Sfera next-generation satellites from 2021".
  13. ^ ""SCOPE" of common interests".
  14. ^ Jones, Andrew (27 July 2021). "Chinese rocket company Space Pioneer secures major funding ahead of first launch". SpaceNews. Retrieved 27 July 2021.
  15. ^ Grush, Loren (26 August 2020). "A future with tens of thousands of new satellites could 'fundamentally change' astronomy: report". The Verge. Retrieved 22 November 2020.
  16. ^ a b de Selding, Peter B. (11 January 2021). "GROUP CONVERSION, OR PAY US & WE BELIEVE? SES, EUTELSAT, HISPASAT SAY THEY'D INVEST IN EU LEO BROADBAND PROJECT". Space Intel Report. Retrieved 11 January 2021.
  17. ^ del Portillo, Inigo; Cameron, Bruce G.; Crawley, Edward F. (1 June 2019). "A technical comparison of three low earth orbit satellite constellation systems to provide global broadband". Acta Astronautica. 159: 123–135. doi:10.1016/j.actaastro.2019.03.040. ISSN 0094-5765.
  18. ^ Bhattacherjee, Debopam; Singla, Ankit (3 December 2019). "Network topology design at 27,000 km/hour". Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies. CoNEXT '19. Orlando, Florida: Association for Computing Machinery: 341–354. doi:10.1145/3359989.3365407. ISBN 978-1-4503-6998-5.
  19. ^ a b c Bhattacherjee, Debopam; Aqeel, Waqar; Bozkurt, Ilker Nadi; Aguirre, Anthony; Chandrasekaran, Balakrishnan; Godfrey, P. Brighten; Laughlin, Gregory; Maggs, Bruce; Singla, Ankit (15 November 2018). "Gearing up for the 21st century space race". Proceedings of the 17th ACM Workshop on Hot Topics in Networks. HotNets '18. Redmond, WA, USA: Association for Computing Machinery: 113–119. doi:10.1145/3286062.3286079. ISBN 978-1-4503-6120-0.
  20. ^ Handley, Mark (15 November 2018). "Delay is Not an Option: Low Latency Routing in Space". Proceedings of the 17th ACM Workshop on Hot Topics in Networks. HotNets '18. Redmond, WA, USA: Association for Computing Machinery: 85–91. doi:10.1145/3286062.3286075. ISBN 978-1-4503-6120-0.
  21. ^ Heaven, Douglas (7 November 2018). "The first detailed look at how Elon Musk's space internet could work". New Scientist. Retrieved 22 November 2020.
  22. ^ Handley, Mark (14 November 2019). "Using ground relays for low-latency wide-area routing in megaconstellations". Proceedings of the 18th ACM Workshop on Hot Topics in Networks. HotNets '19. Princeton, NJ, USA: Association for Computing Machinery: 125–132. doi:10.1145/3365609.3365859. ISBN 978-1-4503-7020-2.
  23. ^ Press, Larry (30 December 2019). "Starlink Simulation Shows Low Latency Without Inter-Satellite Laser Links". Retrieved 22 November 2020.
  24. ^ "About LSST | Rubin Observatory". Retrieved 22 November 2020.
  25. ^ Hainaut, Olivier R.; Williams, Andrew P. (1 April 2020). "Impact of satellite constellations on astronomical observations with ESO telescopes in the visible and infrared domains". Astronomy & Astrophysics. 636: A121. arXiv:2003.01992. doi:10.1051/0004-6361/202037501. ISSN 0004-6361. Retrieved 22 November 2020.
  26. ^ Kimbrough, Adam. "Satellite constellations and radio astronomy". The Space Review. Retrieved 22 November 2020.