Scleronomous

From Wikipedia, the free encyclopedia
Jump to: navigation, search

A mechanical system is scleronomous if the equations of constraints do not contain the time as an explicit variable and the equation of constraints can be describe by generalized coordinates (simply position). Such constraints are called scleronomic constraints. The opposite of scleronomous is rheonomous.

Application[edit]

Main article:Generalized velocity

In 3-D space, a particle with mass , velocity has kinetic energy

Velocity is the derivative of position with respect to time. Use chain rule for several variables:

Therefore,

Rearranging the terms carefully,[1]

where , , are respectively homogeneous functions of degree 0, 1, and 2 in generalized velocities. If this system is scleronomous, then the position does not depend explicitly with time:

Therefore, only term does not vanish:

Kinetic energy is a homogeneous function of degree 2 in generalized velocities .

Example: pendulum[edit]

A simple pendulum

As shown at right, a simple pendulum is a system composed of a weight and a string. The string is attached at the top end to a pivot and at the bottom end to a weight. Being inextensible, the string’s length is a constant. Therefore, this system is scleronomous; it obeys scleronomic constraint

where is the position of the weight and is length of the string.

A simple pendulum with oscillating pivot point

Take a more complicated example. Refer to the next figure at right, Assume the top end of the string is attached to a pivot point undergoing a simple harmonic motion

where is amplitude, is angular frequency, and is time.

Although the top end of the string is not fixed, the length of this inextensible string is still a constant. The distance between the top end and the weight must stay the same. Therefore, this system is rheonomous as it obeys constraint explicitly dependent on time

See also[edit]

References[edit]

  1. ^ Goldstein, Herbert (1980). Classical Mechanics (3rd ed.). United States of America: Addison Wesley. p. 25. ISBN 0-201-65702-3.